Biodiversity protection is a necessary condition to maintain clean water, see the article titled: Biodiversity protection and quality of water: the role of feedbacks in ecosystems

Biodiversity protection is a necessary condition to maintain clean water. This is the main conclusion of the
article titled:
Biodiversity protection and quality of water: the role of feedbacks in ecosystems.
http://link.springer.com/article/10.1023/A%3A1014465220673;

DOI: 10.1023/A:1014465220673;

http://5bio5.blogspot.com/2015/01/article-titled-biodiversity-protection.html
42 downloads by 26.01.2015. Ranking of this article increased recently (ranking on the basis of altmetrics score of attention online).
This paper is on the short prestigious, honorable list ‘Top papers, books on aquatic ecology, ecotoxicology’ at the largest global catalog, WorldCatalog [source:
http://5bio5.blogspot.com/2014/09/the-series-of-publications-on-list-of.html].
Innovative concepts that provide new arguments in biodiversity conservation, water ecosystem protection, protection of aquatic environment:
Ostroumov S. A. Biodiversity protection and quality of water: the role of feedbacks in ecosystems. – Doklady Biological Sciences. 2002. Volume 382, Numbers 1- 6, p. 18-21.
Full text:
https://www.researchgate.net/publication/11371556_Biodiversity_protection_and_quality_of_water_the_role_of_feedbacks_in_ecosystems ;

The review (favorable) of this article was published at World Catalog; the review rated this article as excellent:
https://www.worldcat.org/oclc/94201659
http://5bio5.blogspot.com/2014/06/paper-rated-as-excellent-biodiversity.html
The text of the review in other languages:
French: http://5bio5.blogspot.com/2014/06/in-french-review-of-ecology.html

Spanish: http://5bio5.blogspot.com/2014/06/spanish-review-ecology-paper-comentario.html

Chinese: http://5bio5.blogspot.com/2014/06/in-chinese-review-of-ecology-paper.html

Japanese: http://5bio5.blogspot.com/2014/06/in-japanese-review-of-paper.html

Korean : http://5bio5.blogspot.com/2014/06/in-korean-review-paper.html
**

The paper presents some new ideas and new facts:

** NEW IDEAS: The article presents a new concept of how biodiversity helps towards better stability and water quality, in other words, how biodiversity is involved in the ecosystem services. The author made an innovative analysis of his experimental data which led to the following fundamental conclusion: to maintain water quality, it is vital to protect the functionally active biodiversity of water ecosystems. In other words, according to this article, the protection of functionally active, including filter-feeders, is a key to maintenance of water quality.
** NEW FACTS. Among new facts: the laundry detergent (exemplified by a common detergent IXI) 20 mg/L inhibited water filtration by bivalves, marine mussels Mytilus galloprovincialis; in another series of experiments, the laundry detergent (exemplified by the detergent Deni-Automat) 30 mg/L also inhibited the water filtration by another species of bivalve mollusks, namely, oyster Crassostrea gigas.
DOI 10.1023/A:1014465220673. http://www.springerlink.com/content/p89cugy9ddk053g7/; MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC. ISSN 0012-4966 (Print) 1608-3105 (Online). http://scipeople.ru/users/2943391/; http://sites.google.com/site/2dbs382p18biodivers/;

**

An Amphiphilic Substance Inhibits the Mollusk Capacity to Filter out Phytoplankton Cells from Water

Download. Attention online. French professor, Université de Bretagne Occidentale,

downloaded the article entitled: An Amphiphilic Substance Inhibits the Mollusk Capacity to Filter out Phytoplankton Cells from Water;

link.springer.com/article/10.1023%2FA%3A1026671024000;

Reference:

An amphiphilic substance inhibits the mollusk capacity to filter out phytoplankton cells from water. – Biology Bulletin, 2001, Volume 28, No. 1, p. 95-102.

https://www.academia.edu/782718/ ;

http://www.scribd.com/doc/63444377

**

**

Professor Vianney Pichereau, France

 

Professor (Full)
PhD, HDR
Recently downloaded:

An Amphiphilic Substance Inhibits the Mollusk Capacity to Filter out Phytoplankton Cells from Water

**

Abstract

The effect of synthetic anionic surface active substance (SAS) sodium dodecylsulfate (SDS, 4 mg/l) on the kinetics of water filtration by mussel Mytilus edulis was studied. A suspension of algae Isochrysis galbana was added to the vessel with the mussels, and their filtration activity was measured by counting the concentration of the algae cells in the experimental vessels. Algae concentration was measured every 30 min for an hour and a half. The inhibiting effect on the mollusk filtration rate (FR) was qualitatively described. After the first 30 min filtration at 4 mg/l initial SDS concentration, the cell density was 322% of the control. The inhibiting effect was observed later as well. Due to FR inhibition in the vessels with the above specified initial SDS concentration, the algae cell density was 6.4 and 14.7 times that of the control after 1 and 1.5 h, respectively. Thus, SAS SDS can decrease the natural capacity of aquatic ecosystems for self-purification and disturb other aspects of ecosystem functioning through inhibiting the filtration activity of mussels. The obtained data are discussed in the context of environment and hydrosphere protection from pollution.

**

Full text and info:

 

 

The Effect of Synthetic Surfactants on the Hydrobiological Mechanisms of Water Self-Purification

Article ranks 2nd among many papers.

The Effect of Synthetic Surfactants on the Hydrobiological Mechanisms of Water Self-Purification ;

DOI 10.1023/B:WARE.0000041919.77628.8d;

http://link.springer.com/article/10.1023%2FB%3AWARE.0000041919.77628.8d;

Journal: Water Resources , Volume 31, Issue 5 , pp. 502-510 ;

Author: S. A. Ostroumov

http://5bio5.blogspot.com/2015/01/article-ranks-2nd-among-many-papers.html

Title:

The Effect of Synthetic Surfactants on the Hydrobiological Mechanisms of Water Self-Purification

The context below was calculated when this article was last mentioned on 8th January 2015;

Method of comparison: Compared to all articles in journal Water Resources:

So far Altmetric has tracked a number of articles from this journal. This article scored higher as 75% of them.

It Ranks 2nd;

**

References (57):

  1. Aizdaicher, N.A., Malynova, S.I., and Khristoforova, N.K., Influence of Detergents on Microalga Growth, Biologiya Morya, 1999, vol. 25, pp. 234–238. In Russian.
  2. Alekseenko, T.L., and Aleksandrova, N.G., The Role of Bivalves in the Mineralization and Sedimentation of Organic Matter, Gidrobiologicheskiy Zhurnal, 1995, vol. 31, no. 2, pp. 17–22. In Russian.
  3. Alimov, A.F., Funktsional’naya ekologiya presnovodnykh dvustvorchatykh mollyuskov (Functional Ecology of Freshwater Bivalves), Leningrad: Nauka, 1981. In Russian.
  4. Boichenko, V.K., and Grigor’ev, V.T., On the Method for Calculating the Entry of Synthetic Surfactants into the Ivankovo Reservoir, Vodnye Resursy, 1991, no. 1, pp. 78–87. In Russian.
  5. Braginskii, L.P., Velichko, I.M., and Shcherban’, E.P., Presnovodnyi plankton v toksicheskoi srede (Freshwater Plankton in Toxic Environment), Kiev: Naukova Dumka, 1987. In Russian.
  6. Vasternak, K., and Ostroumov, S.A., Effect of Water Pollution by Bio-S Detergent on Euglena, Gidrobiologicheskiy Zhurnal, 1990, vol. 26, no. 6, pp. 78–79. In Russian.
  7. Vinberg, G.G., Bentos Uchinskogo vodokhranilishcha (Benthos of the Ucha Reservoir), Moscow: Nauka, 1980. In Russian.
  8. Vinogradov, M.E., and Shushkina, E.A., Funktsionirovanie planktonnykh soobshchestv epipelagiali okeana (Functioning of Planktonic Communities of the Epipelagic Zones of the Ocean), Moscow: Nauka, 1987. In Russian.
  9. Gorbunova, A.V., Effect of Suspended Matter on Planktonic Filter Feeders, Sbornik Nauchnykh Trudov GNII Ozernogo i Rechnogo Rybnogo Khozyaistva, 1988, no. 288, pp. 69–70. In Russian.
  10. Gutel’makher, B.L., Metabolizm planktona kak edinogo tselogo (Metabolism of Plankton as a Whole), Leningrad: Nauka, 1986. In Russian.
  11. Kartasheva, N.V., and Ostroumov, S.A., Studying the Capacity of Surfactants to Inhibit the Filtration Activity of Rotifera, in Pishchevaya promyshlennost’ na rubezhe tret’ego tysyacheletiya (Food Industry on the Eve of the Third Millennium), Moscow: Moskovsk. gos. tekhnol. akademiya, 2000, pp. 245–247. In Russian.
  12. Kolotilova, N.N., and Ostroumov, S.A., Growth under the Effect of a Surfactant-Containing Substance, in Problemy ekologii i fiziologii organizmov (Problems of Ecology and Physiology of Organisms), Moscow: Dialog-MGU, 2000, p. 66.
  13. Konstantinov, A.S., Gidrobiologiya (Hydrobiology), Moscow: Vysshaya Shkola, 1979. In Russian.
  14. Lisitsyn, A.P., Matter and Energy Fluxes in the Outer and Inner Spheres of the Earth, Global’nye izmeneniya prirodnoi sredy-2001 (Global Changes in the Environment–2001), Dobretsov, N.L. and Kovalenko, V.I., Eds., Novosibirsk: GEO, 2001, pp. 163–248. In Russian.
  15. Matorin, D.N., Vavilin, D.V., Popov, I.V., and Venediktov, P.S., Method for Biotesting Natural Waters with the Use of Delayed Fluorescence of Microalgae, Metody biotestirovaniya kachestva vodnoi sredy (Methods for Biotesting the Quality of Aquatic Environment), Filenko, O.F., Ed., Moscow: Mosk. Gos. Univ., 1989, pp. 10–20. In Russian.
  16. Metelev, V.V., Kanaev, A.I., and Dzasokhova, N.G., Vodnaya toksikologiya (Aquatic Toxicology), Moscow: Kolos, 1971. In Russian.
  17. Mitin, A.V., Effect of Some Environmental Factors on Water Clarification Activity of Bivalves, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State University, 1984. In Russian.
  18. Moiseenko, T.I., Methodology and Methods for Determining Critical Loads (In the Case of Surface Waters of Kola Subarctics), Izv. RAN. Ser. Geogr., no. 6, pp. 68–78. In Russian.
  19. Monakov, A.V., Pitanie presnovodnykh bespozvonochnykh (Nutrition of Freshwater Invertebrates), Moscow: IPEE, 1998. In Russian.
  20. Ostroumov, S.A., Vvedenie v biokhimicheskuyu ekologiyu (Introduction to Biochemical Ecology), Moscow: Mosk. Gos. Univ., 1986. In Russian.
  21. Ostroumov, S.A., Biological Activity of Surfactant-Containing Waters, Khimiya i Tekhnologiya Vody, vol. 13, no. 3, pp. 270–283. In Russian.
  22. Ostroumov, S.A., Criteria of the Environmental Hazard of Anthropogenic Impact on Biota: Search for a System, Doklady Akademii Nauk ( Dokl. Akad. Nauk), 2000, vol. 371, no. 6, pp. 844–846. In Russian.
  23. Ostroumov, S.A., A Concept of Aquatic Biota as Labile and Vulnerable Component of Water Self-Purification System, Dokl. Akad. Nauk, 2000, vol. 372, no. 2, pp. 279–282. In Russian.
  24. Ostroumov, S.A., Biologicheskie effekty poverkhnostno-aktivnykh veshchestv v svyazi s antropogennymi vozdeistviyami na biosferu (Biological Effects of Surfactants in the Context of Anthropogenic Impact on the Biosphere), Moscow: MAKS-Press, 2000. In Russian.
  25. Ostroumov, S.A., Aquatic Ecosystem: A Large-Scale Diversified Bioreactor with Water Self-Purification System, Dokl. Akad. Nauk, 2000, vol. 374, no. 3, pp. 427–429. In Russian.
  26. Ostroumov, S.A., Principles of Analysis of the Environmental Hazard of Anthropogenic Impact, in Particular, Chemical Pollution: Conception and New Data, Vestnik MGU. Ser.16, Biologiya, 2000, no. 4, pp. 27–33. In Russian.
  27. Ostroumov, S.A., Biologicheskie effekty pri vozdeistvii poverkhnostno-aktivnykh veshchestv na organizmy (Biological Effect of Surfactants on Organisms), Moscow: MAKS-Press, 2001. In Russian.
  28. Ostroumov, S.A., Amphiphile Supresses the Ability of Mollusks to Filter Water and Remove Phytoplankton Cells from It, Izv. RAN. Ser. Biol., 2001, no. 1, pp. 108–116. In Russian.
  29. Ostroumov, S.A., Disbalance of Factors that Control the Population of Unicellular Planktonic Organisms under Anthropogenic Impact, Dokl. Akad. Nauk, 2001, vol. 379, no. 1, pp. 136–138. In Russian.
  30. Ostroumov, S.A., Response of Unio tumidus to the Impact of Chemical Mixture and the Hazard of Synecological Summing of Anthropogenic Impacts, Dokl. Akad. Nauk, 2001, vol. 380, no. 5, pp. 714–717. In Russian.
  31. Ostroumov, S.A., The Hazard of Two-Level Synergism at Synecological Summing of Anthropogenic Impacts, Dokl. Akad. Nauk, 2001, vol. 380, no. 6, pp. 847–849. In Russian.
  32. Ostroumov, S.A., Synecological Principles of Solving Eutrophication Problem, Dokl. Akad. Nauk, vol. 381, no. 5, pp. 709–712. In Russian.
  33. Ostroumov, S.A., Methods of Biotesting: Methods for Assessing the Potential Hazard of Chemicals in Accordance with Their Capacity to Reduce the Filtration Activity of Hydrobionts (Case Study of Bivalves), Ecol. Studies, Hazards, Solutions, 2001, vol. 5, no. 5.
  34. Ostroumov, S.A., A New Type of the Effect of Potentially Hazardous Substances: Disuniting Pelagic–Benthic Conjunction, Dokl. Akad. Nauk, 2002, vol. 383, no. 1, pp. 138–141. In Russian.
  35. Ostroumov, S.A., Identification of a New Type of Chemical Hazard: Inhibition of Environmental Remediation Processes, Doklady Akademii Nauk, vol. 385, no. 4, pp. 571–573. In Russian.
  36. Ostroumov, S.A., A System of Principles for Preservation of the Biogeocenotic Function and Biodiversity of Filter Feeders, Doklady Akademii Nauk, 2002, vol. 383, no. 5, pp. 710–713. In Russian.
  37. Ostroumov, S.A., Preservation of Biodiversity and Water Quality: the Role of Feedbacks in Ecosystems, Doklady Akademii Nauk, 2002, vol. 382, no. 1, pp. 138–141. In Russian.
  38. Ostroumov, S.A., and Maksimov, V.N., Degradation of Algae in Aquatic Medium Polluted by Etonium, Ekologiya, 1988, no. 6, pp. 165–168. In Russian.
  39. Ostroumov, S.A., and Fedorov, V.D., Principal Components of Ecosystem Self-Purification and the Possibility of Its Derangement Due to Chemical Pollution, Vestnik MGU. Ser. 16, Biologiya, 1999, no. 1, pp. 24–32. In Russian.
  40. Parshikova, T.V., Veselovskii, V.V., Veselova, T.V., and Dmitrieva, A.G., Effect of Surfactants on the Functioning of the Photosynthetic Apparatus of Chlorella, Al’gologiya, vol. 4, no. 1, pp. 38–46. In Russian.
  41. Skal’skaya, I.A., and Flerov, B.A., Assessment of the State of the Upper Volga (Yaroslavl Province), Ekologiya, 1999, no. 6, pp. 442–448.
  42. Skurlatov, Yu.I., Principles of Natural Water Quality Management, in: Ekologicheskaya khimiya vodnoi sredy (Ecological Chemistry of Aquatic Environment), Moscow: Mosk. Gos. Univ., 1988, vol. 1, pp. 230–255.
  43. Stavskaya, S.S., Udod, V.M., Taranova, L.A., and Krivets, I.A., Mikrobiologicheskaya ochistka vody ot poverkhnostno-aktivnykh veshchestv (Microbiological Water Purification of Surfactants), Kiev: Naukova Dumka, 1988.
  44. Sushchenya, L.M., Kolichestvennye zakonomernosti pitaniya rakoobraznykh (Quantitative Regularities in Crustacean Nutrition), Minsk: Nauka i Tekhnika, 1975.
  45. Waterbery, John, and Ostroumov, S.A., The Effect of Non-Ionogenic Surfactant on Cyanobacteria, Mikrobiologiya, vol. 63, no. 2, pp. 258–262. In Russian.
  46. Filenko, O.F., Vodnaya toksikologiya (Water Toxicology), Chernogolovka, 1988. In Russian.
  47. Flerov, B.A., Ekologo-fiziologicheskie aspekty toksikologii presnovodnykh zhivotnykh (Ecological–Physiological Aspects of Toxicology of Freshwater Animals), Leningrad: Nauka, 1989. In Russian.
  48. Yakovlev, V.A., Trophic Structure of Zoobenthos as an Ecological Indicator for Aquatic Ecosystems and a Water Quality Index, Vodnye Resursy, vol. 27, no. 2, pp. 237–244. In Russian.
  49. Lech, J., and Vodicnik, M., Biotransformation, in Fundamentals of Aquatic Toxicology, Rand, G. and Petrocelli, S.N.Y, Eds., N.Y.: Hemisphere Publ. Corp., 1985, pp. 526–557.
  50. Ostroumov, S.A., Biological Filtering and Ecological Machinery for Self-Purification and Bioremediation in Aquatic Ecosystems: Towards a Holistic View, Rivista di Biologia / Biology Forum, 1998, vol. 91, pp. 247–258.
  51. Ostroumov, S.A., Synopsis of New Data and Concepts in Aquatic and General Ecology, Ecological Studies, Hazards, Solutions, 2001, vol. 5, pp. 130–136.
  52. Ostroumov, S.A., Inhibitory Analysis of Top-Down Con-trol: New Keys to Studying Eutrophication, Algal Blooms, and Water Self-Purification, Hydrobiologia, vol. 469, pp. 117–129.
  53. Ostroumov, S.A., Polyfunctional Role of Biodiversity in Processes Leading to Water Purification: Current Con-ceptualizations and Concluding Remarks, Hydrobiologia, 2002, vol. 469, pp. 203–204.
  54. Palaski, M., and Booth, H., Zebra Mussel Pseudofaeces Production, Degradation, and Their Potential for Removal of PCBs from Freshwater, Abstr. Pap. Present. Ann. Meet. Mich. Acad. Ferris State Univ., Ann Arbor, Mich., 1995, vol. 27, no. 3, p. 381.
  55. Poremba, K., Gunkel, W., Lang, S., and Wagner, F., Marine Biosurfactants, III. Toxicity Testing with Marine Microorganisms and Comparison with Synthetic Surfactants, Z. Naturforsch, 1991, vol. 45C, pp. 210–216.
  56. Wetzel, R.G., Limnology: Lake and River Ecosystems, San Diego: Academic, 2001.
  57. Yamasu, T., and Mizofuchi, S., Effects of Synthetic, Neutral Detergent and Red Clay on Short-Term Measure-ment of O 2 Production in an Okinawan Reef Coral, Galaxea, 1989, vol. 8, no. 1, pp. 127–142.

**

Key words:

water quality, filter-feeders, water, self-purification, bivalves, ecotoxicology, aquatic, ecosystems, ecotoxicants, pollutants, surfactants, detergents, new, discovery, hazards, protection of environment, ecology, environmental, toxicology,  Mytilus edulis, Mytilus gallprovincialis, Mytilus, Unio, phytoplankton, water filtration, marine, freshwater, mussels, oysters, suspension feeders, inhibition, bivalves, mollusks, toxicity, bioassay,

Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification.

Review article: Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification. – Hydrobiologia. 2002. 469: 117-129.

link.springer.com/article/10.1023%2FA%3A1015559123646

DOI 10.1023/A:1015559123646;

Most important online mentions. Abstract and content of the article. Citation of the article (selected examples).

http://5bio5.blogspot.com/2015/01/inhibitory-analysis-of-top-down-control.html

Key links:

link.springer.com/article/10.1023%2FA%3A1015559123646 ;

https://plus.google.com/113741567003933181536/posts/TqJrNkYSZ6B;

 

Inhibitory analysis of top-down control: new keys to studying …

www.researchgate.net/…/200587396_Inhibitory_analysis_of_topdown_co
https://www.researchgate.net/publication/200587396_Inhibitory_analysis;
by SA Ostroumov – ‎2002 – ‎Cited by 57 – ‎Related articles

Publication » Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification.

 
MORE INFORMATION ON THIS ARTICLE:
SCORING, RANKING – analysis of attention given this article online. Notification from independent experts, 08.01.2015:
Other articles of a similar age in journal Hydrobiologia:
We’re able to compare this article to 33 articles from the same journal and published within six weeks on either side of this one. This article has done very well, scoring higher than 90% of its contemporaries.
In the 90%ile;  Ranks 3rd.
Results of consideration of ALL articles of a similar age:
Older articles will score higher simply because they’ve had more time to accumulate mentions. To account for age we can compare this score to the 73,904 tracked articles that were published within six weeks on either side of this one in any journal. This article has done well, scoring higher than 82% of its contemporaries.
In the 82%ile.
Information on impact, interest attracted:
20 readers on Mendeley, by January 2, 2015;
31 downloads from ResearchGate; by January 8, 2015;
345 views on ResearchGate by January 8, 2015;
168 views on Scribd, Jan 2, 2015 [https://ru.scribd.com/doc/52598579/Ostroumov-S-A-Inhibitory-];
79 views on Academia [https://www.academia.edu/782765/Inhibitory_analysis_];
cited by 58, by January 2, 2015; according to Google Scholar;
**
This paper is on the short prestigious, honorable list entitled ‘Top papers, books on aquatic ecology, ecotoxicology’ at the largest global catalog, WorldCatalog. [WorldCat itemizes the collections of 72,000 libraries in 170 countries. It contains more than 300 million records, representing over 2 billion physical and digital assets] [source:
http://5bio5.blogspot.com/2014/09/the-series-of-publications-on-list-of.html].
Ostroumov S.A. Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification. – Hydrobiologia. 2002. 469: 117-129.
https://www.researchgate.net/publication/200587396_ ;
DOI 10.1023/A:1015559123646;
Full text online:
https://www.researchgate.net/publication/200587396_Inhibitory_analysis_of_top-down_control_new_keys_to_studying_eutrophication_algal_blooms_and_water_self-purification;
https://www.academia.edu/2922575/Inhibitory_analysis_of_top-down_control_new_keys_to_studying_eutrophication_algal_blooms_and_water_self-purification ;
http://www.moipros.ru/files/author_4_article_9.doc; www.springerlink.com/index/R9PTJEQ5FK8VLA6M.pdf;
http://scipeople.com/uploads/materials/4389/2Hydrobiologia469p117w%20Addendum.DOC;
KEYWORDS: self-purification, filter-feeders, surfactants, detergents, benthic, bivalves, aquatic, ecosystems, eutrophication, algal, blooms, hazards, chemical pollution, water quality, phytoplankton, marine, freshwater, invertebrates, clearance rate, biological effects, xenobiotics, ecotoxicants, pollutants, sustainable use, aquatic resources, aquaculture, mariculture, ecosystem services, environmental science, ecotoxicology, pollution control, bioassay, mussels, oysters, man-made effects, anthropogenic, biodiversity, clearance rate, LAS, linear alkylbenzene sulphonate, NOEC, No observable effect consentration, QSAR, quantitative structure – activity relationship, SFG, Scope for Growth, SDS, sodium dodecyl sulphate, TDTMA, tetradecyltrimethylammonium bromide, TX100, Triton X-100, sublethal effects, pellets, faeces, pseudofaeces, suspended matter, preventing, algal blooms, sponges, polychaetes, molluscs, echinoderms, larvae of insects, ascidians, alkylsulfates, nonionic surfactants, nonylphenols, bioassay, Cladocera, Daphnia magna, Daphnia pulex, Ceriodaphnia dubia, anilazin, benomyl, bentazon, cyfluthrin, dimethoat, lindan, maneb, zineb, ziram, pesticides, inhibitory effects on feeding, mortality, EC50, LC50, endosulfan, diazinon, methyl parathion, lindan, dichlobenil, Unio tumidus, U. pictorum, Mytilus galloprovincialis, Mytilus edulis, Crassostrea gigas
ABSTRACT (A SHORT VERSION):
Top-down control is an important type of interspecies interactions in food webs. It is especially important for aquatic ecosystems. Phytoplankton grazers contribute to the top-down control of phytoplankton populations. The paper is focused on the role of benthic filter feeders in the control of plankton populations as a result of water filtering and the removal of cells of plankton from the water column. New data on the inhibitory effects of surfactants and detergents on benthic filter-feeders (Unio tumidus, U. pictorum, Mytilus galloprovincialis, M. edulis, and Crassostrea gigas) are presented and discussed. Importance and efficiency of that approach to the problems of eutrophication and water self-purification is pointed out. Chemical pollution may pose a threat to the natural top-down control of phytoplankton and water self-purification process. The protection of that natural top-down control is considered an important prerequisite for sustainable use of aquatic resources.
The paper was cited by international scientists, including:
Bryan W. Brooks, Timothy Riley, Ritchie Taylor. Water quality of effluent-dominated stream ecosystems: ecotoxicological, hydrological, and management considerations
Hydrobiologia 2006; 556(1):365-379;
Chatzinikolaou Y. and Lazaridou M. Identification of the self-purification stretches of the Pinios River, Central Greece. – Mediterranean Marine Science, 2007, Vol. 8 (2), p. 19-32.
GL Wei, ZF Yang, BS Cui, B. Li, H. Chen, JH Bai, S.K. Dong [GuoLiang Wei, ZhiFeng Yang, BaoShan Cui, Bing Li, He Chen, JunHong Bai and ShiKui Dong] Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China. – Water Resour Manage (2009) 23:1763–1780.
Samal, N. R.; Mazumdar, A.; Johnk, K. D.; Peeters, F. Assessment of ecosystem health of tropical shallow waterbodies in eastern India using turbulence model.-Aquatic Ecosystem Health & Management, Volume 12, Number 2, April 2009, pp. 215-225.
Bhatti, Zafar. Lake and Reservoir Management. – Water Environment Research [Water Environ. Res.]. Oct 2004.Vol. 76, no. 6, pp. 2106-2154.
ABBREVIATIONS: CR – clearance rate; LAS – linear alkylbenzene sulphonate; NOEC – No observable effect consentration; QSAR – quantitative structure – activity relationship; SFG – Scope for Growth; SDS – sodium dodecyl sulphate; TDTMA – tetradecyltrimethylammonium bromide; TX100 – Triton X-100
ADDENDUM TO THE ABSTRACT (EXTENDED VERSION of the abstract, or a condensed text of the article):
1. INTRODUCTION
By definition, the organisms of the two adjacent trophic levels interact with each other so that the organisms of the higher trophic level may produce some effect on the organisms of the lower trophic level. If the latter are not too abundant, the effects of the organisms of the higher level lead to limiting, decreasing or stabilizing the populations of the organisms of the lower trophic level. These effects might be considered a control or a partial control of the organisms of the lower trophic level. Many examples of interactions of that type were studied in various natural and experimental systems (Table 1). The significance of top-down control attributes additional importance to studies of the grazing activity of crustaceans (e.g., Sushchenya, 1975; Gutelmaher, 1986), rotifers (e.g., Monakov, 1998; Bul’on et al., 1999), protozoan plankton (e.g., Bul’on et al., 1999), and benthic invertebrates (e.g., Alimov, 1981; Donkin et al., 1989, 1991; Zaika, 1992; Ogilvie & Mitchell, 1995; Widdows et al., 1995a, Widdows et al., 1995b; Newell, 1999), and other invertebrates (Monakov, 1998).
In aquatic ecosystems, the problem of the control of the organisms of the lower trophic level (algae) is of outstanding importance because it is relevant to the problem of eutrophication. Also, control mechanisms are important in better understanding the problem of algal blooms, including the toxic algae blooms. To avoid over-simplification, we should realize that there are many factors that regulate the abundance of algal populations; top-down control is only one of them.
Many species of invertebrates of both plankton and benthos belong to the higher trophic level as compared with algae and cyanobacteria of phytoplankton. As for zooplankton species and their filter-feeding activity, an important body of information was presented and analyzed in (Sushchenya, 1975; Gutelmaher, 1986). Filtering activity of benthic species has also been studied (e.g., Alimov, 1981; Ostroumov et al., 1997, 1998).
In this paper we focus on some species of invertebrates of benthos, which are filter-feeders and in this capacity contribute to the top-down control of phytoplankton.
2. ROLE OF BENTHIC INVERTEBRATES IN FILTERING WATER AND RESULTING PHYTOPLANKTON GRAZING: FILTER-FEEDERS
The diversity of benthic organisms that filter water and remove algal cell and other particulate matter is broad. Filter-feeders inhabit the bottom of both freshwater and marine ecosystems. To facilitate broader general conclusions, in this paper we will consider both freshwater and marine organisms. The range of filter-feeders includes sponges, polychaetes, molluscs, echinoderms, larvae of many insects, ascidians, and some other invertebrates.
There are many examples of massive scale water filtering by benthos (e.g., Table 2; see also: Alimov, 1981; Ostroumov & Fedorov, 1999). It was shown that in some man-made reservoirs the total volume of water is filtered by benthic bivalves 2-24 times annually (e.g., Konstantinov, 1979). In a shallow lake in New Zealand the total volume is filtered during a time period of less than 2 days (Ogilvie & Mitchell, 1995). Equally massive filtering activity was discovered for the benthic sponges in the coastal waters of Lake Baikal which stores 22, 995 km3 of superb clean water (for comparison, the amount of the annual world consumption of freshwater was 3, 240 km3, and the annual freshwater withdrawal in Europe was 359 km3, in North and Central America 697 km3; the data for year 1987) (World Resources 1995-1995).
As a result of water filtering, algal cells are removed from the water column. It is important that some filter-feeders (e.g., bivalves) remove more algae than they need for feeding purposes. Excessive amounts of algae biomass and other particulate matter are excreted in the form of pellets (to distinguish them from regular faeces they are called pseudofaeces) which are larger in size than the algal cells and therefore they settle to the bottom rapidly. The amount of pseudofaeces may exceed the amount of the assimilated food manyfold. As a result, the total activity of bivalve molluscs in removing algal biomass from the water column and in making water clearer is far beyond just the trophic needs of bivalves.
The total weight of organic matter that is removed from a water column and deposited as bottom sediments is measured as high as kilograms per m2 per year. E.g., in the ecosystem of the man-made reservoir Volgogradskoe, the amount of the formerly suspended matter that was removed by molluscs from the water column and finally sedimented was 8.3 kg m-2 annually (Kondratiev, 1976; cited in Konstantinov, 1979). For the entire reservoir that is located in the center of the largest European river, the amount of sedimented matter was as high as 29 million tons.
3. INHIBITORY EFFECTS OF XENOBIOTICS AND POLLUTANTS: A DECREASE IN WATER FILTRATION AND ASSOCIATED PHYTOPLANKTON GRAZING
Man-made chemicals can produce strong inhibition of water filtering by benthic molluscs or impair the normal pattern of opening bivalves which is needed to maintain the efficient filtration of water. Some examples of those effects are given in Table 3. More examples could be found in literature (e.g., Stuijfzand, 1995; Ostroumov, 1998). The experiments were usually conducted using some phytoplankton species as the organism that is being removed from the water column during the filtration experiment. Thus, in experiments with bivalve Mytilus edulis, the algae Isochrysis galbana are often used (Donkin et al., 1997; Ostroumov et al., 1997; 1998). In our experiments with M. galloprovincialis (see below) we have observed a xenobiotic-induced decrease in grazing phytoplankton cells of Monochrysis lutheri and Dunaliella viridis. In our experiments with freshwater bivalves Unio tumidus and U. pictorum, we described some pollutant-induced inhibition of the removal of green algae Scenedesmus quadricauda and cyanobacteria Synechocystis.
The major part of our experiments were done in the laboratory. Under field conditions, it was described that in polluted habitats the biomass and vitality of bivalves declined (Zaika, 1992), which means that their contribution to water filtering is negatively affected. It was possible to develop an integrative parameter, Scope for Growth (SFG) which enables the scientist to estimate the total amount of energy available for the population of mussels for its growth and reproduction (after deduction of the amount of energy is lost during respiration etc.) (Widdows et al., 1995a, 1995b). It was shown that in terms of the entire populations, in polluted habitats the reduced filtration and reduced intake of energy from digested plankton (and seston as a whole) led to the fact that SFG was reduced.
4. MORE SPECIFIC EXAMPLES AND NEW DATA: INHIBITORY EFFECTS OF SURFACTANTS
We have initiated a systematic study of the effects of another class of aquatic pollutants, namely surfactants, on the water-filtering activity of bivalves and on the resulting removal of algal cells from the water column.
Among the various organic chemicals that are entering the natural environment in large amounts (Yablokov & Ostroumov, 1983, 1985, 1991), surfactants play a significant role (Ostroumov, 1986; 1990; 1991; 1994 a; 1994b; Marcomini et al., 1988; Quiroga et al., 1989; Granmo et al, 1991; Fernandez et al., 199; Lewis, 1991; Takada & Ishiwatari, 1991; Chalaux et al., 1992; Terzic & Ahel, 1993). It was shown that surfactants produce negative and sometimes also stimulatory effects on cyanobacteria (Waterbury & Ostroumov, 1994), green algae (e.g., Goryunova & Ostroumov, 1986), diatoms (Ostroumov & Maertz-Wente, 1991), plant seedlings (Ostroumov, 1986; 1990; 1991; Nagel et al., 1987; Maximov et al., 1988; Telitchenko & Ostroumov, 1990), shrimp (Drewa et al., 1988), Daphnia magna and D. pulex (e.g., Maki & Bishop, 1979; Martinez et al., 1989), freshwater amphipods (Pantani et al., 1995), rotifers (Kartasheva & Ostroumov, 1998), fish (e.g., Versteeg & Shorter, 1992; Malcolm et al., 1995). Some data on the effects of linear alkylbenzene sulphonate (LAS) on Mytilus galloprovincialis Lmk (Bressan et al., 1989; Marin et al., 1993), Mytilus edulis (Granmo, 1972) and some other marine benthic species (Marin et al., 1991) are available. However, almost nothing was known about the effects of alkylsulfates, nonionic surfactants (derivatives of nonylphenols), and some other surfactants as well as detergents on the filtering activity of Mytilus edulis, M. galloprovincialis, Crassostrea gigas, Unio tumidus, and U. pictorum.
The purpose of the experimental part of this work was to obtain data on the effects of some surfactants and surfactant-containing products including detergents, on the ability of bivalves (M. edulis, M. galloprovincialis, Unio tumidus, and U. pictorum) to filter water and remove algal or other cells from it.
Freshwater mussels Unio sp. were collected in the Moscow River. Mytilus galloprovincialis were collected at the Black Sea. Crassostrea gigas were grown at a mariculture farm (the Black Sea, Institute of Biology of Southern Seas NANU). M. edulis were collected at the Exmouth estuary and kept in tanks with aeration , water flow and periodic automatic imitation of low tide (water was removed out of tanks for 3 h every day) (Dr. Donkin’s participation and help in the work with M. edulis is acknowledged).
The temperature in experiments with M. galloprovincialis and C. gigas was mostly 22-27 C, in the experiments with Unio sp. 18-20 C. The cell removal and the cell density during the filtration by molluscs was measured using Hitachi 200-20 spectrophotometer (experiments with Unio sp.) and SF-26 (LOMO) spectrophotometer (experiments with M. galloprovincialis and C. gigas). In experiments with M. edulis (temperature 16 C), the number of cells per unit of volume was measured using the Coulter counter ( Coulter Electronics, model Industrial D). When a sample of filtered water without adding algae was used, the Coulter count was usually below 200.
The clearance rate (CR) was calculated according to Widdows & Salkeld (1993) using the following equation:
CR (l h-1) = (Volume of water e.g. 2 l) x (loge C1 — logeC2)/time interval in h
where C1 and C2 are cell concentrations at the beginning and end of each time increment (e.g. 0.5 h).
Statistical analysis was performed using EXCEL software. For linear regression analysis, an option was used which gives an opportunity to fix the intercept at a predetermined value.
Several chemicals were used. Sodium dodecyl sulfate (SDS) (molecular mass 288.38) was purchased from Fluka. The purity was > 99% (assayed by GC, analysis number 332533/1 395). Triton X-100 (TX100) (x = 9-10 ethoxy units, H2O < 1 %, residue on ignition, 0.2%, analysis number 43306/1 795) was purchased also from Fluka. Tetradecyltrimethylammonium bromide (TDTMA, molecular mass 336.4) was purchased from Sigma (St.Louis, Missouri, 63178 USA; lot 55H1322). Detergents used were available commercially.
Results of the experimentation were as following.
Freshwater bivalves, Unio tumidus and U. pictorum removed planktonic cells from water. The ability to do so was inhibited by surfactants of several types (Table 4), including TDTMA, and TX100 .
A marine species, M. galloprovincialis, was also efficient in removing from water cells of phytoplankton and unicellular organisms in general. Several surfactants as well as detergents which contain surfactants inhibited this ability of M. galloprovincialis (Table 4). The chemicals tested included surfactants TDTMA, SDS, and several detergents, such as Tide-Lemon, Lotos-Extra, Losk-Universal.
In experiments with M. edulis, after one hour of filtering, in the control set (clean water) the number of algal cells per unit of volume decreased to almost 5.6% of the initial level, which is a good example of how efficiently bivalves can control planktonic populations (Table 5). This is in accord with the large amount of data on the significant filtration rates of bivalves (Alimov, 1981; Monakov, 1998) and their impact on ecosystems (Zaika, 1992). In the important series of measurements, in the control beakers (filtration of unpolluted water) the number of algal cells decreased by a factor of 15.98, while in the beakers with SDS (1 mg l–1) the number of cells decreased by a factor of 7.93. Thus, the algal cell density in control was half that in the system at the initial concentration of 1 mg l–1. The difference increased by the end of the experiment.
When the initial concentration of SDS was 2 mg l–1, a substantial difference from the control set was observed after the first half-hour period (Table 6). After 65 min of filtering, the algal cell density in the control set was almost 1/3 that contained in the system with SDS.
Further increase of the initial concentration of SDS up to 4 mg l–1 caused a dramatic 3-times increase of the cell density over that in the control set after only 35 min of filtering. In 65-min of filtering, the difference was 6-fold, and following 95-min filtering – over 14-fold.
At the initial concentration of SDS 5 mg l–1, the difference between systems with and without SDS was over 16-fold after 125 min of filtering.
It was possible to calculate the clearance rate (CR), using a standard formula widely accepted in the literature (Donkin et al. 1989; 1991; Widdows & Salkeld, 1993).
The summary of the inhibitory effects shows, with a few exceptions, two general trends:
1) an increase in the initial concentration of SDS in the range of 0.5 to 5 mg l–1 gave rise to an the increase in the inhibitory effect on CR (Table 7);
2) at any given concentration of SDS, the highest effect took place during the first 30-min period, with some decrease in the inhibitory effect by the end of the experiment.
The latter trend, however, was not paralleled by a mitigation of the effect on the residual algal cell density in the water. When the cell density was considered, the difference from the control was maximal by the end of the experiment.
Using another chemical, a non-ionic surfactant Triton X-100, we obtained similar data with EC50 close to that of SDS (Table 8). At a concentration of 4 mg l–1, the inhibition of the clearance rate during the time period of 30 min after the beginning of the experiment was almost 10-fold, and during the later period of time, the inhibition was about 5-fold.
The data obtained in our study showed that the filtering activity of mussels demonstrated a more sensitive response than some other biotests we had used in our experiments in bioassaying SDS, including green algae (Goryunova & Ostroumov, 1986) and plant seedlings (Nagel et al., 1987). The filtering activity of mussels was also more sensitive to SDS than some of the traditional lethal biotests with aquatic invertebrates and fish which had been applied for studies of LAS and alkyl sulfates (Sivak et al., 1982; Ostroumov, 1991).
It is noteworthy that the inhibitory effect of SDS on CR was developed within a rather narrow range of SDS concentrations (1 to 5 mg l–1). That could be in accord with a hypothesis that the decrease in CR is at least in part the result of a behavioural response of mussels.
Our data on effects of SDS are in good agreement with the results obtained by other authors who studied effects of another anionic surfactant, linear alkylbenzene sulphonate (LAS) on filtering rate. It was shown that in experiments with exposure for 48 h and 96 h the filtration rate of mussels Mytilus galloprovincialis was reduced when concentration of dissolved LAS was higher than 1.5 mg l–1 (Bressan et al., 1989). In our experiments the biotest was slightly more sensitive as we exposed the animals to the surfactant for 1.5 h prior to beginning measurements and observed some inhibition at the initial concentration of 1 mg l–1.
Bressan et al. (1989) studied also effects of LAS on the growth of mussels and on mortality and spermatozoids of freshwater bivalve molluscs. They observed some decrease in the increment of length of the major axis of the shell of mussels at concentrations of LAS as low as 0.25 and 0.5 mg l–1, but the effect required up to 70 days to be observed. No significant effects were found within 30 days of their experiments. The length of time that was necessary to reveal the effect was a limitation of the technique, however it was impressive to observe almost a 2-fold decrease in growth when the chronic experiment with a relatively low level of LAS (0.25 mg l–1 ) lasted for 160 days and more.
In a parallel experiment the same authors observed a 30% increase in the respiration of LAS-treated (220 days, 0.25 mg l–1 ) young mussels (Bressan et al., 1989). Unfortunately, they did not specify what they called young mussels.
Some decrease in filtering rate was observed in another set of experiments when the concentration of LAS was 0.25 mg l–1 , but the duration of the surfactant treatment was much longer (220 days) than in our experiment, and the size of mussels was again not specified (Bressan et al., 1989). Also, they have shown that, at a concentration of 1 mg l–1, LAS inhibited the filtration rate after 7 days of exposure. It seems important that in our experiments we observed effects after only 1.5 hours of exposure to the anionic surfactant.
The LC50 (48 h) was about 40 mg l–1 and LC50 (96 h) was about 1.7 mg l–1 (Bressan et al., 1989), which was much lower than in the case of freshwater bivalves Anodonta cygnea and Unio elongatulus. For the latter two species, LC50 (96 h) was about 200 mg l–1 (Bressan et al, 1989). The mobility of spermatozoa of A. cygnea was almost completely inhibited at a concentration of LAS equal to 20 mg l–1.
Measurements of CR were used to quantify the toxic effects of chemicals and to study QSAR (Donkin & Widdows, 1990) for various chemicals, including alkanes and phenyl alkanes (Donkin et al., 1991) as well as such aromatics as toluene, naphthalene, n-propylbenzene, 1-chloronaphthalene, biphenyl etc. (Donkin et al., 1989). Two xenobiotics, including an organotin compound, inhibited the fitration rate by Dressena polymorpha and Crenomytilus grayanus (Mitin, 1984).
The filtering activity of not only bivalves, but also of other filter-feeders is vulnerable to the inhibition by surfactants. In experiments with rotifers Brachionus angularis Gosse, we have shown that TDTMA inhibited their filtration rate and the removal of cells of Chlorella sp. from the water (Kartasheva & Ostroumov, 1998). At a TDTMA concentration of 0.5 mg l–1, the average efficiency of filtration was 58.5% of that in control.
However important these kinds of studies of CR are, it is also important to consider the general consequences of a decrease in the CR for the ecosystem.
The role of the filtering activity of mussels is connected with their high population densities. It was estimated that at Narragansett Bay, Rhode Island, mussels represented about 77% (11 kg m -2) of the total community dry weight (Nixon et al., 1971), and numbers of the same order of magnitude were reported for other locations (Seed & Suchanek, 1992). Taking into account that, in our experiments, one mussel with a total wet weight about 8.5 g filtered over 1 L of water per hour, it is easy to estimate that, at high abundancy, a mussel community may filter over 100 L water per hour per 1 m2 of the sea bottom.
A comparison of the tables for residual cell densities and CR for specific concentrations of surfactants shows that even a small decrease in CR produces a large difference in the residual cell density. The latter parameter may be considered as a model for any kind of particles which are being removed from the seawater by mussel filtering. In this way we may predict a huge decline in the natural ability of benthic communities to purify natural water when the water is polluted by surfactants as well as by other chemicals reducing the CR.
Changes (inhibition) of the filtering activity of bivalves might have many consequences in changing many parameters and processes in ecosystems, which were considered in more detail in (Ostroumov et al., 1997; 1998; Ostroumov, 1998).
Those considerations show that the inhibition of CR has consequences not limited by the prosperity of the mussel population, but that it is important for the state of the marine and estuarine ecosystems in much broader terms. Prospects of chemical-induced inhibition of water filtration by bivalves poses some ecological hazards in view of the role of bivalves in eutrophication control. The latter was studied in the case of the ecosystem of Chesapeake Bay (the Atlantic coast of the U.S.A.) (Newell et al., 1999).
5. SENSITIVITY OF PLANKTON GRAZERS TO XENOBIOTICS – ANALOGOUS EVIDENCE FOR ZOOPLANKTON
Analysis of the specific LC50 for Cladocera and various species of algae shows that in case of many pollutants Cladocera are more sensitive than algae. According to the data disseminated at the recent workshop in Netherlands (9-12 December 1999, Den Helder, TNO; participants of the research project: M. Scholten, R. Jak, B. Clement, E. Foekema, P.Hernandez, K.Kaag, H. van Dokkum, M. Smit), in the case of the following pesticides, species of Cladocera (mainly Daphnia magna, D. pulex, Ceriodaphnia dubia) are more sensitive: anilazin, benomyl, bentazon, cyfluthrin, dimethoat, lindan, maneb, zineb, and ziram. In case of several pesticides, it was directly shown that the inhibitory effects on feeding were observed at lower concentrations, than the concentrations which induced mortality. EC50 (effects on feeding within 4-24 h) were lower than LC50 (24-48 h) for endosulfan, diazinon, methyl parathion, lindan, and dichlobenil (according to the data distributed at the same workshop). In case of atrazine, a concentration of 1.6 mg l–1 within 10 min produced 50% reduction in feeding, which shows again that feeding activity is inhibited at concentrations lower than those inducing mortality: LC50 (48 h) was 9.88 mg l–1.
Also, NOEC (No observable effect concentration) was the basis for comparing sensitivities of Cladocera and various species of algae to pesticides. In case of the following chemicals a higher sensitivity of Cladocera was found: azinfos-methyl, cyromazin, diazinon, dimethoat, endosulfan, fenpropathrin, malathion, mecoprop, propoxur, trifluralin, and some other pesticides.
All these data as well as the new evidence in the experiments conducted at TNO during the project led by Dr. M. Scholten (see Table 1) are in accord with the concept that pollutants may impair top-down control of algae. This conclusion is analogous to the conclusion made by us on the basis of our data for benthic filter-feeders.
6. SYNOPTIC OVERVIEW AND GENERAL CONCLUSIONS
Some benthic organisms, including spongi, polychets, bivalves, echinoderms, larvae of insects, ascidia and some others proved to be efficient organisms in filtering water and thereby in reducing the amount of particulate matter suspended in the water. Benthic filter-feeders remove from the surrounding water various suspended particles including algal cells. By doing so, they contribute to natural mechanisms that keep algal populations under some control. That type of top-down control under some circumstances might become especially important. The problem of algal blooms in the context of eutrophication is increasing attention to all mechanisms of control of algal populations including the control by virtue of water filtering by benthic filter-feeders, including bivalves. Some pollutants were shown to be efficient inhibitors that decrease water filtering and resulting grazing phytoplankton. Those chemicals produced a decrease in removal of algae from water column by bivalves.
The author initiated systematic studies of effects of surfactants and detergents on filtering activity and removal of algae by freshwater and marine bivalves. Marine and freeshwater bivalves Mytilus edulis, M. galloprovincialis, and Unio sp. are efficient in removing unicellular organisms from water in result of their filtration activity. They are capable of drastically reducing the amount of cells of phytoplankton in water. This is an important mechanism contributing to natural control of algal populations in ecosystems. This regulatory mechanism is vulnerable to aquatic pollutants as exemplified by surfactants and detergents. New data are obtained and presented in this paper on how surfactants (anionic, non-ionic, and cationic ones) and surfactant-containing detergents inhibit the ability of marine and freshwater bivalves to remove cells of algae and cyanobacteria from water. On the basis of our new data, the final conclusion is that the new evidence support the views proposed in (Ostroumov, 1998; 1999; 2000c; 2000e) about the vulnerability of the filtration activity of invertebrates (both planktonic and benthic animals) to some pollutants, including surfactants. Our data and general conclusion are in accord with the idea that pollutants can induce reduction in grazing efficiency of benthic and planktonic invertebrates.
We consider the studies of inhibitory effects of chemicals on fiter-feeders as an effective approach to elucidating the details of filter-feeding and associated removal of phytoplankton from the water column. The mechanisms and rates of plankton removal are of utmost importance for controlling levels of plankton which are the key parameters in processes of eutrophication and algal blooms.
Water filtering activity of invertebrates is part of water self-purification in ecosystems. The self-purification of water is one of preconditions for the sustainable use of water resources. Therefore, the vulnerability of filter-feeders to aquatic pollutants (including surfactants and detergents) leads to a potential threat to the sustainable use of aquatic resources in situations when the ability of ecosystems to purify water is inhibited by pollutants.
In sum, on the basis of the data presented here and in some of our publications (Ostroumov, 1998; 1999; 2000a; Ostroumov et al., 1997, 1998; Ostroumov & Fedorov, 1999), the following inferences are to be made:
1. Surfactants inhibit the filtering ability of marine and freshwater bivalves with a drastic effect on the amount of particulate material (modelled here by algal cells) left in the water.
2. When considering the environmental importance of surfactants and detergents (and of a broader range of xenobiotics and pollutants as well), the ramifications relevant to disturbance of the natural ability of the ecosystem to control phytoplankton populations should be taken into account.
3. Our new data are in accordance with the opinion (Ostroumov, 1990; 1991; 2000b; 2000c; 2000d; Telitchenko & Ostroumov, 1990; Yablokov & Ostroumov, 1991) that surfactants, if being discharged into the environment at substancial rates, might, under some circumstances and in some ecosystems, become more significant as environmental pollutants than it was thought before.
4. We make the prediction that many new examples are to be found of pollutants (both organic and inorganic) which inhibit filtration rate of filter-feeders (not only bivalves, but also other benthic and plankton organisms) and by doing so reduce the ability of invertebrates to control unicellular plankton populations. We predict that new examples are to be found of pollutants which inhibit the ability of invertebrates to control eutrophication.
5. Sustainable use of resources of aquatic ecosystems requires as an important pre-condition the efficient functioning of the ecosystems towards self-regulating and water self-purification. This pre-requisite includes normal functioning of top-down control exercised by the organisms at the higher levels of the trophic chains of ecosystems.
6. Studies of inhibitory effects of chemicals on the top-level organisms (e.g., grazers of plankton, including benthic filter-feeders) are a useful approach in obtaining information on the top-down control in trophic chains.
LIST OF TABLES:
Table 1. Top-down control in various natural and experimental systems (examples).
Table 2. Water-filtering activity of benthic organisms in some ecosystems (examples).
Table 3. Xenobiotics and contaminants that were shown to inhibit water-filtering activity of bivalves.
Table 4. New data on the inhibitory effect of surfactants and products that contain surfactants on the filtration efficiency of bivalve molluscs.
Table 5. Decrease in Isochrysis galbana cell density (per 0.5 ml) during filtering by Mytilus edulis in clean water (control beakers, A) and at 1 mg l–1 SDS (experimental beakers, B).
Table 6. Effect of SDS (2 mg l–1) on the efficiency of water filtering measured as the number of cells of Isochrysis galbana (per 0.5 mL) in the water after the 30-min period of filtering by Mytilus edulis.
Table 7. Inhibition (%) of the clearance rate (CR) of Isochrysis galbana during filtering by Mytilus edulis at various concentrations of SDS (after Ostroumov et al., 1998, with some changes).
Table 8. Effect of Triton X-100 on the clearance rate during filtering algae Isochrysis galbana by mussels Mytilus edulis (after Ostroumov et al., 1998, with some changes).
REFERENCES:
Alimov, A. F., 1981. Functional Ecology of Freshwater Bivalves (Funktzionalnaja Ekologija Presnovodnykh Dvustvorchatykh Molluskov). Nauka Press, Leningrad. 248 pp.
Bressan, M., R. Brunetti, S. Casellato, G. C. Fava, P. Giro, M. Marin, P. Negrisolo, L. Tallandini, S. Thomann, L. Tosoni, M. Turchetto & G. C. Campesan, 1989. Effects of linear alkylbenzene sulfonate (LAS) on benthic organisms. Tenside Surfactants Detergents 26: 148-158.
Bul’on, V. V., V. N. Nikulina, E. B. Pavelyeva, L. A. Stepanova & T. V. Khlebovich, 1999. Microbial “loop” in the trophic web of the lake plankton. J. Gener. Biol. (Zhurnal Obshchei Biologii) 60: 431-444.
Chalaux, N., J. M. Bayona, M. I.Venkatesan & J. Albaiges, 1992. Distribution of surfactant markers in sediments from Santa Monica basin, Southern California. Mar. Pollut. Bulletin 24: 403-407.
Donkin, P., J. Widdows, S. V. Evans, C. M. Worrall & M. Carr, 1989. Quantitative structure-activity relationships for the effect of hydrophobic organic chemicals on rate of feeding by mussels (Mytilis edulis). Aquat. Toxicol. 14: 277-294.
Donkin, P., J. Widdows, S. V. Evans & M. D. Brinsley. 1991. QSARs for the sublethal responses of marine mussels (Mytilus edulis). Sci. Total Envir. 109/110: 461-476.
Donkin, P., J. Widdows, S. V. Evans, F. Staff & T. Yan, 1997. Effects of neurotoxic pesticides on the feeding rate of marine mussels Mytilus edulis. Pestic. Sci. 49: 196-209.
Drewa, G., Z. Zbytniewski & K. Palgan. 1988. Influence of an anionic detergent (alkylbenzene sulphonate) on enzymes, moulting cycle and survival in the shrimp Cragon cragon L. Kieler Meeresforsch. Sonderheft 6: 454-462.
Fernandez, P., M. Valls, J. M. Bayona & J. Albaiges, 1991. Occurrence of cationic surfactants and related products in urban coastal environments. Envir. Sci. Technol. 25: 547-550.
Gutelmaher, B. L., 1986. Metabolism of Plankton as the Whole (Metabolizm Planktona Kak Edinogo Tzelogo). Nauka, Leningrad. 156 pp.
Goryunova, S. V. & S. A. Ostroumov, 1986. Effects of an anionic surfactant on green algae and seedlings of some angiosperms (Vozdejstvije anionnogo deterghenta na zelenuju vodorosl’ i prorostki nekotorykh pokrytosemennykh rastenij). Biological Sciences (Biologicheskie Nauki). 7: 84-86.
Granmo, A., 1972. Development and growth of eggs and larvae of Mytilus edulis exposed to a linear dodecylbenzenesulphonate, LAS. Mar. Biol. 15: 356-358.
Granmo, A., S. Kollberg, M. Berggren, R. Ekelund, K. Magnusson, L. Renberg & O. Wahlberg, 1991. Bioaccumulation of nonylphenol in caged mussels in an industrial coastal area of the Swedish coast. In: Angeletti, G. (ed.) Organic Micropollutants in the Aquatic Environment. Kluwer, Dordrecht: 71-79.
Kartasheva, N. V. & S. A. Ostroumov, 1998. Tetradecyltrimethylammonium bromide (tetradetziltrimetilammonij bromid). Toxicological Bulletin (Toksikologicheskii Vestnik). 5: 30-32.
Konstantinov, A. S., 1979. General Hydrobiology (Obshchaja Gidrobiologija). Vysshaya Shkola press, Moscow. 480 pp.
Lewis, M. A, 1979. Chronic and sublethal toxicities of surfactants to aquatic animals: a review and risk assessment. Wat. Res. 25: 101-113.
Maki, A. W. & W. E. Bishop, 1979. Acute toxicity studies of surfactants to Daphnia magna and Daphnia pulex. Arch. Envir. Contam. Toxicol. 8: 599-612.
Malcolm, H. M., P. D. Howe & S. Dobson, 1995. Toxicity of LAS to aquatic organisms. Toxicol. & Ecotoxicol. News 2: 20-24.
Marcomini, A., B. Pavoni, A. Sfriso & A. A. Orio, 1988. Aromatic surfactants in the marine environment: analysis and occurrence of LAS, NPEO and NP. United Nations Environmental Programme and World Health Organisation. Environmental contamination. 3rd International conference-Venice. CEP consultants. 94-98 p.
Marin, M. G., M. Bressan & R. Brunetti, 1991. Effects of linear alkylbenzene sulphonate (LAS) on two benthic marine organisms. Aquat. Toxicol. 19: 241-248.
Marin, M. G., L. Pivotti, G. Campesan, M. Turchetto & L. Tallandini, 1993. Effects and fate of sediment-sorbed linear alkylbenzene sulphonate (LAS) on the bivalve mollusc Mytilus galloprovincialis Lmk. Wat. Res. 28: 85-90.
Martinez, J., J. Vives-Rego & J. Sanchez-Leal, 1989. The effect of chemical structure and molecular weight of commercial alkylbenzenes on the toxic response of Daphnia and naturally occuring bacteria in fresh and seawater. Wat. Res. 23: 569-572.
Maximov, V. N., H. Nagel & S. A. Ostroumov, 1988. Biotesting of waters polluted with the surfactant sulfonol and DNOC (Biotestirovanie vod, soderzhashchikh poverkhnostno-aktivnoje veshchestvo sulfonol and DNOK). Hydrobiological Journal (Gidrobiologicheskii Zhurnal) 24: 54-55.
McHenery, J., G. Linley-Adams & D. Moore, 1991. Effects of dichlorvos exposure on the acetylcholinesterase levels of the gills of the mussel, Mytilus edulis L., experimental and field studies. Scottish Fisheries Working Paper, 16/91, The Scottish Office Agriculture and Fisheries Department, Aberdeen.
Mitin, A., 1984. Effect of some environmental factors on the water-clearing activity of bivalves. Summary of Ph.D. Thesis, Moscow. 22 pp.
Monakov, A. V., 1998. Feeding of Freshwater Invertebrates (Pitanie Presnovodnykh Bespozonochnykh). Institute of Ecological and Evolutionary Problems, Moscow. 320 pp.
Nagel, H., S. A. Ostroumov & V. N. Maximov, 1987. Inhibition of growth of buckweat seedlings by sodium dodelyl sulfate (Inghibirovanije rosta prorostkov grechikhi pod vozdejstvijem dodecilsulfata natrija). Biological Sciences (Biologicheskie Nauki). 12: 81-84.
Newell, R., J. Cornwell, M. Owens & J. Tuttle, 1999. Role of benthic suspension-feeders in maintaining estuarine water quality. ASLO 1999 Meeting (February 1-5, 1999, Santa Fe) Abstract Book. 130-131.
Nixon, S. W., C. A. Oviatt, C. Rogers & K. Taylor, 1971. Mass and metabolism of a mussel bed. Oecologia (Berl.). 8: 21-30.
Ogilvie, S. & S. Mitchell, 1995. A model of mussel filtration in a shallow New
Zealand lake, with reference to eutrophication control. Arch. Hydrobiol. 133(4): 471-482.
Ostroumov, S. A., 1986. Introduction to Bio-Chemical Ecology. (Vvedenie v Biohimicheskuju Ekologiju). Moscow University Press, Moscow. 176 pp.
Ostroumov, S. A., 1990. Some aspects of assessment of the biological activity of xenobiotics (Nekotorye aspekty otzenki biologicheskoi aktivnosti ksenobiotikov). Bulletin of Moscow University. Ser. 16. Biology (Vestnik Moskovskogo Universiteta. Ser. 16. Biologija). No.3: 74-78.
Ostroumov, S. A., 1991. Biological activities of water polluted by surfactants (Biologhicheskaja aktivnost’ vod, soderzhashchikh poverkhnostno-aktivnyje veshchestva). Chemistry and Technology of Water (Khimija i Tekhnologija Vody). 13(3): 270-283.
Ostroumov, S. A., 1994a. Ecotoxicology and biological activity of surfactants. Third European Conference on Ecotoxicology (Zurich, August 28-31, 1994). Abstracts. Abstract No. 6.26: 141.
Ostroumov, S. A., 1994b. Some aspects of ecotoxicology and biochemical ecology of surfactants. Proceedings of the 6th International Congress of Ecology (21-26 August 1994, Manchester): 127.
Ostroumov, S. A., 1998. Biological filtering and ecological machinery for self-purification and bioremediation in aquatic ecosystems: towards a holistic view. Rivista di Biologia/ Biology Forum. 91: 247-258.
Ostroumov, S. A., 1999. The ability of mussels to filter and purify the sea water is inhibited by surfactants. ASLO 1999 Meeting (February 1-5, 1999, Santa Fe) Abstract Book: 134.
Ostroumov, S. A., 2000a. Biological Effects of Surfactants in Connection with the Anthropogenic Impact on the Biosphere. MAX Press, Moscow. 116 pp.
Ostroumov, S. A., 2000b. Criteria of ecological hazards due to anthropogenic effects on the biota: searching for a system (Kriterii ekologhicheskoj opastnosti antropoghennykh vozdejstvij na biotu: poiski sistemy). Doklady Biological Sciences 371: 204-206 (the Russian edition: Dokl. Akad. Nauk 371: 844-846).
Ostroumov, S. A., 2000c. The concept of aquatic biota as a labile and vulnerable component of the water self-purification system (Kontzeptzija vodnoi bioty kak labil’nogo i ujazvimogo zvena sistemy samoochishchenija vody). Doklady Biological Sciences 372: 286-289 (the Russian edition: Dokl. Akad. Nauk 372: 279-282).
Ostroumov, S. A., 2000d. Aquatic ecosystem: a large-scale diversified bioreactor with a water self-purification function (Vodnaja ekosistema: krupnorazmernyj diversifitzirovannyj bioreaktor s funktzijej samoochishchenija vody). Doklady Biological Sciences 374: 514-516 (the Russian edition: Dokl. Akad. Nauk 374: 427-429).
Ostroumov, S. A., 2000e. Inhibitory analysis of regulatory interactions in trophic webs (Ingibitornyi analiz regulyatornykh vzaimodeistvii v troficheskikh setyah). Dokl. Akad. Nauk 375: 847-849.
Ostroumov, S. A. & V. D. Fedorov, 1999. The main components of self-purification of ecosystems and its possible impairment as a result of chemical pollution (Osnovnyje komponenty samoochishchenija ekosistem i vozmozhnost’ ego narushenija v rezultate khimicheskogo zagrjaznenija). Bulletin of Moscow University. Ser. 16. Biology (Vestnik Moskovskogo Universiteta. Ser. 16. Biologija) 1: 24-32.
Ostroumov, S. A., & M. Maertz-Wente, 1991. Effects of the non-ionic surfactant on marine diatoms. Papers presented at the 201st National Meeting of American Chemical Society, Atlanta, GA, April 14-19, 1991. 31 (1): 18-19.
Ostroumov, S., P. Donkin & F. Staff, 1997. Inhibition by the anionic surfactant, sodium dodecyl sulphate, of the ability of mussels Mytilus edulis to filter and purify the sea water (Anionnoje poverkhnostno-aktivnoje veshchestvo inghibirujet sposobnost’ midij filtrovat’ i ochishchat’ morskuju vodu). Vestnik Moskovskogo Universiteta. Ser. 16. Biologija. (Bulletin of Moscow University. Ser. 16. Biology) No. 3: 30-36.
Ostroumov, S. A., P. Donkin & F. Staff, 1998. Filtration inhibition induced by two classes of synthetic surfactants in the bivalve mollusc (Narushenije filtracii dvustvorchatymi molluskami pod vozdejstvijem poverkhnostno-aktivnykh veshchestv dvukh klassov). Dokl. Akad. Nauk 362: 574-576.
Pantani, C., N. Spreti, M. C. Maggitti & R. Germani, 1995. Acute toxicity of some synthetic cationic and zwitterionic surfactants to freshwater amphipod Echinogammarus tibaldii. Bull. Envir. Contam. Toxicol. 55: 179-186.
Quiroga, J. M., D. Sales & A. Gomez-Parra, 1989. Experimental evaluation of pollution potential of anionic surfactants in the marine environment. Wat. Res. 23: 801-807.
Reinertsen, H., A. Jensen, J. Koksvik, A. Langeland & Y. Olsen, 1990. Effects of fish removal on the limnetic ecosystem of a eutrophic lake. Can. J. Fish. Aquat. Sci. 47: 166-173.
Scholten, M., R. Jak, B. Clement, E. Foekema, P. Hernandez, K. Kaag, H. van Dokkum & M. Smit, personal communication. 1999.
Seed, R. & T. H. Suchanek, 1992. Population and community ecology of Mytilus. In Gosling, E. (ed.) The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Elsevier, Amsterdam: 87-170.
Sivak, A., M. Goyer, J. Permak & P. Thayer, 1982. Solution Behavior of Surfactants. Plenum Press, New York. 739 pp.
Stuijfzand, S. C., M. H. S. Kraak, Y. A. Wink & C. Davids, 1995. Short-term effects of nickel on the filtration rate of the zebra mussel Dreissena polymorpha. Bull. envir. Contam. Toxicol. 54: 376-381.
Sushchenya, L. M., 1975. Quantitative Trends in the Feeding of Crustaceans. Nauka I Tehnika Press, Minsk. 208 pp.
Takadar, H. & R. Ishiwatari, 1991. Linear alkylbenzenes (LABs) in urban riverine and coastal sediments and their usefulness as a molecular indicator of domestic wastes. Water Science and Technology 23: 437-446.
Telitchenko, M. M. & S. A. Ostroumov, 1990. Introduction to Problems of Biochemical Ecology (Vvedenie v Problemy Biochimicheskoi Ekologii). Nauka Press, Moscow. 288 pp.
Terzic, S. & M. Ahel, 1993. Determination of linear alkylbenzene sulphonates in the Krka river estuary. Bull. Envir. Contam. Toxicol. 50: 241-246.
Varanka, I., 1987. Effect of mosquito killer insecticides on freshwater mussels. Comp. Biochem. Physiol. 86C: 157-162.
Versteeg, D. J. & S. J. Shorter, 1992. Effect of organic carbon on the uptake and toxicity of quarternary ammonium compounds to the fathead minnow, Pimephales promelas. Envir.Toxicol.Chem. 11: 571-580.
Waterbury, J. & S. A. Ostroumov, 1994. Effect of a non-ionic surfactant on marine cyanobacteria (Deistvie neionogennogo poverkhnostno-aktivnogo veshchestva na tzianobakterii). Microbiology (Mikrobiologiya) 63: 259-263.
Widdows, J., P. Donkin, S.V. Evans, D. S. Page & P. N. Salkeld, 1995a. Sublethal biological effects and chemical contaminant monitoring of Sullom Voe (Shetland) using mussels (Mytilus edulis). Proc. Roy. Soc. Edinb. 103B: 99-112.
Widdows, J., P. Donkin, M. D. Brinsley, S. V. Evans, P. N. Salkeld, A. Franklin, R. J. Law & M. J. Waldock, 1995b. Scope for growth and contaminant levels in North Sea mussels Mytilus edulis. Mar. Ecol. Prog. Ser. 127: 131-148.
Widdows, J. & D. Page, 1993. Effects of tributyltin and dibutyltin on the physiological energetics of the mussel, Mytilus edulis. Mar. Environ. Res. 35: 233-249.
Widdows, J., & P. N. Salkeld, 1993. Practical procedures for the measurement of scope for growth. MAP Technical Report Series. UNEP, Athens. P. 71. pages 147-172.
Wootton, J., 1992. Indirect effects, prey susceptibility, and habitat selection: impacts of birds on limpets and algae. Ecology 73: 981-991.
World Resources 1995-1995. Oxford University Press, New York. 1994. 403 pp.
Wurtsbaugh, W., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168 -175.
Yablokov, A. V. & S. A. Ostroumov, 1983. Nature Conservation: Problems and Prospects (Ohrana Zhivoi Prirody: Problemy i Perspectivy). Lesprom Press, Moscow. 271 pp.
Yablokov, A. V. & S. A. Ostroumov, 1985. Levels of Living Nature Conservation (Urovni Ohrany Zhivoi Prirody). Nauka Press, Moscow. 176 pp.
Yablokov, A. V. & S. A. Ostroumov, 1991. Conservation of Living Nature and Resources: Problems, Trends, Prospect. Springer Verlag, Berlin, Heidelberg, New York. 271 pp.
Zaika, V. E., 1992. Long-term Changes in Zoobenthos of the Black Sea (Mnogoletnie Izmeneniya Zoobentosa Chernogo Morya). Naukova Dumka, Kiev. 247 pp.

The paper was cited and its conclusions were approved (selected examples):

The paper [Inhibitory analysis of top-down control: new keys to studying eutrophication, algal …SA Ostroumov – Hydrobiologia, 2002] was cited by:
Water Quality of Effluent-dominated Ecosystems: Ecotoxicological, Hydrological, and Management Considerations. – Hydrobiologia;
[Springer Netherlands];
ISSN 0018-8158 (Print) 1573-5117 (Online);
Volume 556, Number 1, 2006 (February).
DOI 10.1007/s10750-004-0189-7;
p. 365-379;
Bryan W. Brooks 1 , Timothy M. Riley 2 and Ritchie D. Taylor 3
(1) Department of Environmental Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place # 97266, Waco, Texas 76798, USA;
(2) Barton Springs / Edwards Aquifer Conservation District, 1124 Regal Row, Austin, Texas 78748, USA;
(3) Department of Public Health, Centre for Water Resource Studies, Western Kentucky University, 1 Big Red Way, EST 437, Bowling Green, Kentucky 42101, USA;
– – – ——————–
Medit. Mar. Sci., 8/2, 2007, 19-32;
Mediterranean Marine Science;
Volume 8/2, 2007, 19-32;
Identification of the self-purification stretches of the Pinios River, Central Greece;
Y. CHATZINIKOLAOU 1, 2 and M. LAZARIDOU 1
1Department of Zoology, School of Biology, Faculty of Sciences,
Aristotle University of Thessaloniki, Greece;
2Institute of Inland Waters, Hellenic Centre for Marine Research,
46.7 km Athinon – Souniou Av., 190 13, P.O. Box 712, Anavissos, Hellas;
– – – – –
Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China. – Water Resources Management;
[Springer Netherlands],
ISSN 0920-4741 (Print) 1573-1650 (Online),
Volume 23, Number 9, 2009 (July).
DOI 10.1007/s11269-008-9351-8;
pp. 1763-1780;
GuoLiang Wei 1, 2, ZhiFeng Yang 1, BaoShan Cui 1 Contact Information, Bing Li 2, He Chen 1, JunHong Bai 1 and ShiKui Dong 1
(1) State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, P. R. China;
(2) Nuclear and Radiation Safety Centre, State Environmental Protection Administration, Beijing, 100088, P. R. China
– – – —————————————-
Assessment of ecosystem health of tropical shallow waterbodies in eastern India using turbulence model;
Authors: N. R. Samal a; A. Mazumdar b; K. D. Joumlhnk c; F. Peeters d
Affiliations: a Dept. of Civil Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, India;
b School of Water Resources Engineering, Jadavpur University, Kolkata, West Bengal, India;
c Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany;
d Limnologisches Institut, University of Konstanz, Konstanz, Germany;
DOI: 10.1080/14634980902908589;
Published in: journal Aquatic Ecosystem Health & Management, Volume 12, Issue 2, April 2009, pages 215 – 225
– – – – ——-
Lake and Reservoir Management
Bhatti, Zafar
Water Environment Research [Water Environ. Res.]. Vol. 76, no. 6, pp. 2106-2154. Oct 2004.
– – ———————————–

Some aspects of water filtering activity of filter-feeders.

Some aspects of water filtering activity of filter-feeders.
DOI 10.1007/s10750-004-1875-1;
http://link.springer.com/article/10.1007/s10750-004-1875-1;
Article in: Hydrobiologia. 2005. Vol. 542, No. 1. P. 275 – 286.


Paper, water quality, aquatic ecosystem, freshwater, marine, filter-feeders, bivalves, rotifers, filtration rate, clearance rate, surfactants, detergents, ecological taxation, ecological repair, chemical pollution, pollutants, tetradecyltrymethylammonium bromide, heavy metalsAbstract, features.

Article reference:

Ostroumov S.A. Some aspects of water filtering activity of filter-feeders. – Hydrobiologia. 2005. Vol. 542, No. 1. P. 275 – 286.

http://5bio5.blogspot.com/2013/09/some-aspects-of-water-filtering.html

Features:

New concepts and terminology were introduced in the paper: ecological tax; ecological repair of water quality;

a review of the ecological role of filter-feeders, suspension feeders in water (both  freshwater and marine) ecosystems, a first paper to formulate a short  list of the most vital roles and functions as ecosystem engineers;

unique summary of quantitative data on filtration activity of invertebrates;

detailed, fresh-angle analysis of how filter-feeders contribute to water quality improvement and water self-purification;

a deeper understanding of ecosystem services as related to filter-feeders;

  • DOI: 10.1007/s10750-004-1875-1
  • Indexed: Web of Science. 
  •  New concepts and terminology were introduced in the paper: ecological tax; ecological repair of water quality. Opinion paper. Also, a review paper. 
  •  ISSN 0018-8158 (Print) 1573-5117 (Online).
  • Full text see: https://www.researchgate.net/publication/226902807_Some_aspects ; http://www.scribd.com/doc/45914201
  • ABSTRACT. The article gave a fresh review and innovative analysis of the vital role of filter-feeders in functioning and maintenance of stability of aquatic ecosystems (both freshwater and marine ones). The paper includes the following tables which summarize many relevant facts and innovative ideas. 
  • Tables: Table 1. Examples of the impact of filter-feeders on the water column: clearance time. Table 2. Examples of diversity of taxa of benthic organisms involved in removing seston from water, and filtration rates. Table 3. Effect of the increase in concentration of algae on the filtration rate and the amount consumed by rotifers Brachionus calyciflorus. Table 4. The ratio F:P in some groups of organisms (examples of what the author named “ecological taxation”, the new concept and term coined by the author). Table 5. The ratio F: (P+R) in some filter feeders. Table 6. Results of the ecological tax: biosediment formation in 6 ecosystems. Table 7. Contribution of various aquatic organisms to oxidation of organic matter in the ecosystem of the Sea of Okhotsk. Table 8. Some chemicals that inhibit the filtering activity of the filter-feeders (new data of the author). Table 9. Some features of water-filtering biomachinery: 6 fundamental principles. Table 10. The level-block approach to the analysis of ecological hazards of anthropogenic effects on the biota (the new conceptualization proposed by the author). 
  • Some fundamental principles that characterize the pivotal roles of the biodiversity of filter-feeders in ecosystems. Among those roles are: (1) the role of ecological repair (a new concept and term proposed by the author) of water quality, (2) the role of contributing to reliability and stability of the functioning of the ecosystem, (3) the role of contributing to creation of habitat heterogeneity, (4) the role of contributing to acceleration of migration of chemical elements. It is an important feature of the biomachinery of filter-feeders that it removes from water various suspended particles of a very broad range of sizes. Another important principle is that the amount of the organic matter filtered out of water is larger than the amount assimilated so that a significant part of the removed material serves no useful function to the organism of the filter-feeder, but serves a beneficial function to some other species and to the ecosystem as a whole. The new experiments by the author additionally demonstrated a vulnerability of the filtration activity of filter feeders (e.g. bivalves and rotifers) to some chemical pollutants and xenobiotics (e.g., synthetic surfactants exemplified by tetradecyltrymethylammonium bromide, and also heavy metals and some others). The inhibition of the filtration activity of filter-feeders may lead to the situation previously described as that of an ecological hazard of the second type. 
  • KEY WORDSwater quality, aquatic, ecosystem, freshwater, marine, filter-feeders, bivalves, rotifers, filtration rate, clearance rate, surfactants, detergents, ecological taxation, ecological repair, chemical pollution, pollutants, tetradecyltrymethylammonium bromide, heavy metals, mussels, oysters, mollusks, suspension feeders, self-purification, environmental, toxicology, ecotoxicology, ecology
  • .Full name of the author: in English: Sergei Andreevich Ostroumov; Sergei A. Ostroumov; in Russian: Сергей Андреевич Остроумов; С.А.Остроумов;
  •  CITATION of this article:
  • Innovation in ecology (filter-feeders): cited in U.S.A., U.K., Italy, Netherlands, Australia, Kuwait. http://5bio5.blogspot.com/2012/06/innovation-in-ecology-filter-feeders.html; A paper on aquatic ecology (innovative analysis of the roles of filter-feeders in ecosystems) was well-cited in international literature, including countries as diverse as U.S.A., Australia, Kuwait, U.K. and some others. Reference to the paper: Some aspects of water filtering activity of filter-feeders.- Hydrobiologia. 2005. Vol. 542, No. 1. P. 275 – 286; DOI: 10.1007/s10750-004-1875-1; DOI: 10.1007/1-4020-4111-X_26; 
  • Innovation in ecology (filter-feeders): cited in U.S.A., U.K., Italy, Netherlands, Australia, Kuwait; http://5bio5.blogspot.com/2012/06/innovation-in-ecology-filter-feeders.html
  • Examples of the papers that cited this article, selected
  • U.S.A.: Douglas H. Erwin, and Sarah Tweedt . Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. — Evolutionary Ecology. 2011 [Abstract: Organismal modifications to their physical and chemical environment play a significant role in structuring many modern ecosystems, …] DOI: 10.1007/s10682-011-9505-7; http://www.springerlink.com/content/68744t228x044112/; published online 13 July 2011;
  •  
  •  U.S.A.: Journal of the North American Benthological Society, 27(2): 409-423. 2008; doi: 10.1899/07-058.1; http://www.bioone.org/doi/abs/10.1899/07-058.1; Community and foodweb ecology of freshwater mussels; Caryn C. Vaughn, S. Jerrine Nichols, Daniel E. Spooner. 
  •  
  • ITALY: Margherita Licciano, Antonio Terlizzi, Adriana Giangrande, Rosa Anna Cavallo, Loredana Stabili. Filter-feeder macroinvertebrates as key players in culturable bacteria biodiversity control: a case of study with Sabella spallanzanii (Polychaeta: Sabellidae).- Marine Environmental Research, 64, 4 (2007) 504. [1 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Via Prov. Lecce- Monteroni, 73100-Lecce, Italy; 2 Istituto per l’Ambiente Marino Costiero – Sezione di Taranto – CNR, Via Roma 3, 74100-Taranto, Italy];
  •  
  • ITALY: New Biotechnology, Volume 29, Issue 3, 15 February 2012, Pages 443–450; doi: 10.1016/j.nbt.2011.11.003; The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): a potential resource for biotechnological purposes? L. Stabili a, b, M.I. Acquaviva a, F. Biandolino a, R.A. Cavallo a, S.A. De Pascali b, F.P. Fanizzi b, M. Narracci a, A. Petrocelli a, E. Cecere a; a Institute for Coastal Marine Environment (IAMC)–CNR, U.O.S. Taranto, Talassografico “A. Cerruti”, Via Roma 3 – 74100 Taranto, Italy; b Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), Università del Salento, via Prov.le Lecce Monteroni – 73100 Lecce, Italy; 
  •  
  • NETHERLANDS: M. Harty. Christmas tree worms (Spirobranchus giganteus) as a potential bioindicator species of sedimentation stress in coral reef environments of Bonaire, Dutch Caribbean – Physis, 2011, vol.9, p.20-30. The full text see: http://www.scribd.com/doc/54500338/2011-PHYSIS-J-marine-science-v-9; Netherlands 
  • AUSTRALIA: Dafforn K.A., Glasby T.M., Johnston E.L. (2012) Comparing the Invasibility of Experimental “Reefs” with Field Observations of Natural Reefs and Artificial Structures. PLoS ONE 7(5): e38124. doi:10.1371/journal.pone.0038124; ** Affiliation: Katherine A. Dafforn 1*, Tim M. Glasby 2, Emma L. Johnston 1; 1 Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; 2 New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia; 
  •  
  • UNITED KINGDOM, KUWAIT: Mesopot. J. Mar. Sci., 2010, 25 (1): 11 – 30. The effect of salinity and temperature on the uptake of cadmium and zinc by the common blue mussel, Mytilus edulis with some notes on their survival. M. Ali¹ and A. Taylor²*; ¹Aquaculture, Fisheries and Marine Environment Department, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait; ²Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; *e-mail: a.taylor@bio.gla.ac.uk;
  •  
  • U.S.A.:  Yates, Jennifer Maria, “Influences of a Cladophora Bloom on the Diets of Amblema Plicata and Elliptio Dilatata in the Upper Green River, Kentucky” (2012). Masters Theses & Specialist Projects. Paper 1221. http://digitalcommons.wku.edu/theses/1221 
  • U.S.A. Citation in the text of Thesis written at Western Kentucky University, U.S.A.: A fragment of the text: Mussels assimilate only part of the organic matter they consume (Ostroumov, 2005). The consumed materials that aren’t assimilated, however, are not lost from the food web to respiration or burial. Instead, they are deposited on surface sediments in the form of feces or pseudofeces (Strayer et al., 1999). Thus, part of what mussels ingest is not of direct use to them but can reenter the ecosystem (Ostroumov, 2005). Both 5 suspension feeders and deposit feeders benefit from this cycling of matter (Howard & Cuffey, 2006). The excretory waste products of mussels, or “biodeposits”, are..

Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification

Article: Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification.

DOI 10.1023/A:1015559123646;

http://link.springer.com/article/10.1023/A%3A1015559123646;

Links to full text; citation;

**

Reference to the paper:

Ostroumov S.A. Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification. Hydrobiologia. 2002. vol. 469, pages 117-129.

Citation of this paper:

http://www.scribd.com/doc/57034212/; Cited the paper:  Inhibitory analysis of top-down control: new keys to studying eutrophication,… Hydrobiologia.

https://www.researchgate.net/publication/200587396_Inhibitory_analysis

Key words: 

water quality, filter-feeders, water, self-purification, bivalves, ecotoxicology, aquatic, ecosystems, ecotoxicants, pollutants, surfactants, detergents, new, discovery, hazards, protection of environment, ecology, environmental, toxicology, Mytilus,  phytoplankton, water filtration, marine, freshwater, mussels, oysters, suspension feeders,

algal blooms, aquatic ecosystems, eutrophication, filter-feeders, Inhibitory analysis,  new, self-purification, studying, top-down control,  Crassostrea gigas, Mytilus galloprovincialis, Mytilus edulis,  Unio tumidus, Unio pictorum,

**

Full text online free:

https://www.researchgate.net/publication/200587396_Inhibitory_analysis

the web site with the full text of this paper, and Addendum with relevant recent publications, free:

Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification. – Hydrobiologia. 2002. vol. 469, pages 117-129;

http://www.scribd.com/doc/52598579

Abstract:

Top-down control is an important type of interspecies interactions in food webs. It is especially important for aquatic ecosystems. Phytoplankton grazers contribute to the top-down control of phytoplankton populations. The paper is focused on the role of benthic filter-feeders in the control of plankton populations as a result of water filtering and the removal of cells of plankton from the water column. New data on the inhibitory effects of surfactants and detergents on benthic filter-feeders (freshwater mussels Unio tumidus, U. pictorum, marine mussels Mytilus galloprovincialis, M. edulis, and oysters Crassostrea gigas) are presented and discussed. Importance and efficiency of that approach to the problems of eutrophication and water self-purification is pointed out. Chemical pollution may pose a threat to the natural top-down control of phytoplankton and water self-purification process. The latter is considered an important prerequisite for sustainable use of aquatic resources.

**

Examples of citation of this paper: http://ru.scribd.com/doc/57034212/Cited

**

This file, with small changes, is also here:

http://5bio5.blogspot.com/2015/01/updated-812015-article-inhibitory.html

Pellets of some mollusks in the biogeochemical flows of C, N, P, Si, and Al

07.01.2015. Pellets of some mollusks in the biogeochemical flows of C, N, P, Si, and Al. – Doklady Biological Sciences, 2001. Vol. 379, P. 378-381. DOI 10.1023/A:1011620817764;

link.springer.com/article/10.1023%2FA%3A1011620817764;

http://5bio5.blogspot.com/2015/01/pellets-of-some-mollusks-in.html

 

The paper is available in university libraries.

Full text free:

https://www.researchgate.net/publication/259579605_Pellets; http://ru.scribd.com/doc/45911730/;

Pellets of some mollusks in the biogeochemical flows of C, N, P, Si, and Al. – Doklady Biological Sciences, 2001. Vol. 379, P. 378-381.

ISSN: 0012-4966 (Print) 1608-3105 (Online) Distributed by Springer,  orderdept@springer-sbm.com [co-authors: S.A.Ostroumov, Kolesnikov M.P.].

Translated from the original Russian edition: Доклады академии наук [DAN ] 2001.  Том (Vol.) 379.  No. 3.  Стр. (P.) 426-429.

Pellets of some mollusks in the biogeochemical flows of C, N, P, Si, and Al. – Doklady Biological Sciences, 2001. Vol. 379, P. 378-381.

DOI 10.1023/A:1011620817764;

link.springer.com/article/10.1023%2FA%3A1011620817764;

http://5bio5.blogspot.com/2015/01/pellets-of-some-mollusks-in.html
Full text free:

https://www.researchgate.net/publication/259579605_Pellets; http://ru.scribd.com/doc/45911730/;

Pellets of some mollusks in the biogeochemical flows of C, N, P, Si, and Al. – Doklady Biological Sciences, 2001. Vol. 379, P. 378-381. (Translated from: DAN 2001. Vol. 379.  No. 3. P. 426-429). ISSN 0012-4966. Distributed by Springer,  orderdept@springer-sbm.com [co-authors: S.A.Ostroumov, Kolesnikov M.P.].

 

Until now the role of mollusks as links between ecological and geochemical processes was underestimated. The paper discovered the role of mollusks as key biomachines that drive massive flows of chemical elements including C, N, P, Si, Al in the biosphere, and hazards from pollutants as inhibitors of these flows. New data on coupling of geochemical and ecological (hydrobiological) processes. The role of freshwater mollusks, pond snails (Lymnaea stagnalis) in the flows of chemical elements in the biosphere was studied by detecting the elemental composition and amount of pellets produced by the mollusks.

For the first time, the following was quantitatively studied:

(1) the elemental composition (C, N, P, Si, Al) of the pellets formed by mollusks Lymnaea stagnalis feeding on the green leaves of the higher plants Nuphar lutea and Taraxacum officinale;

 

(2) the amount (wet weight, dry weight) of pellets formed by L. stagnalis feeding on the leaves of N. lutea and T. officinale;

(3) the transfer of matter and chemical elements (C, N, P, Si, Al)  with pellets of freshwater bivalves (unionids Unio sp., etc.) per unit biomass of mollusks and per unit area of the ecosystem of the river;

 

(4) the transfer of matter and chemical elements (C, N, P, Si, Al) with the pellets of L. stagnalis per unit biomass of mollusks and per unit area of the ecosystem of the pond.

Synthetic surfactants tetradecyltrimethylammonium bromide (ТDТМА) 2 mg/l, sodium dodecylsulfate (SDS) 1-2 mg/l, and  the laundry detergent (one of common detergents, Tide-Lemon) 75 mg/l inhibited the trophic activity (feeding rate) of the snails (L. stagnalis). Percents of food assimilability of taxons of invertebrates, from Rotatoria (48-80) to Diptera (1-31)].

DOI 10.1023/A:1011620817764;   http://sites.google.com/site/2001dbs379p378pellets/; http://www.scribd.com/doc/45911730;

PMID: 12918380 [PubMed – indexed for MEDLINE];

 Tags: C, N, P, Si, Al, carbon, nitrogen, phosphorus, freshwater mollusks, pond snails, Lymnaea stagnalis, pellets, higher plants, Nuphar lutea, feeding rate, tetradecyltrimethylammonium,  dodecyl sulfate, SDS, laundry detergent, trophic activity, aquatic, environmental, toxicology, ecotoxicology, ecology, freshwater, water quality, pollution, hazards, unionids, bivalves, Unio,

**

Explanation of some comments to the title of this journal: after 1991, this journal is an English translation of proceedings of the Russian Academy of Sciences (not of the USSR Academy of Sciences). However, in some computer data bases the old comment on the title (with mentioning of the USSR, namely: proceedings of the Academy of Sciences of the USSR, Biological sciences sections) is kept. The mention of ‘USSR’ is outdated, obsolete. The bottom line is: the formal title of this journal is: Doklady Biological Sciences. 

**

Notes for this article (4 public)  

Innovative pape on how aquatic molluscs function as part of biomachinery and mechanism to transfer chemical elements through aquatic ecosystem. The first paper in which the quantitative measurements were reported on how much of the chemical elements are being transferred through ecosystem in the form of pellets.

 

** First measurements, first publication: New quantitative data on how aquatic mollusks drive fluxes of the chemical elements.

 

** Ostroumov S. A., M. P. Kolesnikov. Pellets of Some Mollusks in the Biogeochemical Flows of C, N, P, Si, and Al. – Doklady Biological Sciences, 2001, v.379, p.378-381. www.scribd.com/doc/49065604; http://www.scribd.com/doc/45911730;

PMID: 12918380; www.scribd.com/doc/49065604; http://www.scribd.com/doc/45911730;

Added 

NOTE ON IMPORTANCE OF THE PUBLICATIONS to which this article belongs. This publication belongs to a series of publications. The importance of this publication is in part substantiated by the importance of the entire series of the papers and books. Explanation of the importance of the entire series see here:

 

** #Explanations. Why are these papers -#environmental_science #ecology, biology- well cited in articles, dissertations:  http://5bio5.blogspot.com/2013/03/explanations-why-are-these-papers-on.html

 

** Why it matters. FAQ on #innovative publications. #Environmental_science. New facts on #environmental_hazards.  http://5bio5.blogspot.com/2013/01/why-it-matters-faq-on-innovative.html

 

** Review published of the article: Effect of a Cationic Amphiphilic Compound on Rotifers http://5bio5.blogspot.com/2013/04/review-published-of-article-effect-of.html

 

** Priority No.1 requirement in protecting water quality, water safety, sustainability; environmental safety of water supply. Innovative approach. http://5bio5.blogspot.com/2013/01/priority-no1-requirement-in-protecting.html

 

** Clear Water Fundamentals: theory, practical recommendations, water self-purification. Basics of the molecular-ecological mechanism of water quality formation and water self-purification.  http://5bio5.blogspot.com/2012/09/fundamentals-theory-water-self.html

 

**

Added 

Note on evidence of merit: citation. EVIDENCE OF MERIT. CITATION. A series of relevant publications (environmental science, ecology, water ecology). The articles of this series were cited by scientists of scientific institutions worldwide, including universities and research institutes in USA, UK, Germany, France, Netherlands, Belgium, Sweden, China, Australia, et al. The examples of citation:  http://5bio5.blogspot.com/2013/06/evidence-of-merit-citation-series-of.html

Added 

Note on availability in libraries. http://5bio5.blogspot.com/2013/06/availability-in-libraries-list-of-blog.html

This publication belongs to a series of publications (papers, books) on environmental sciences. The publications of this series are available in libraries worldwide. More info see here:

Availability in libraries. List of blog posts /web pages / links. More than 20 pages. Papers and books available in libraries of N.America, Europe, Asia, Latin America, Africa, Australia and New Zealand. Topics: environmental science, ecology, biology, water quality research. Sections of the list: U.S.A., Canada, U.K.; Europe, Asia; Latin America; Australia and N.Zealand; Various countries and regions:  http://5bio5.blogspot.com/2013/06/availability-in-libraries-list-of-blog.html

 

**

Online, mentioned:

https://www.facebook.com/pages/Britain-UK-British-English-Language-Ecology/765678433528820

 

https://www.facebook.com/USA.World.GoodUniversitiesEnvironmentalScience?ref=ts&fref=ts

 

https://www.facebook.com/pages/TurkeyTurkish-universities-EcologyWaterSeaEnvironment/344761425599941?fref=ts

 

https://www.facebook.com/pages/University-of-Cambridge-Environmental-Science/478196538868332?ref=ts&fref=ts

 

https://www.facebook.com/pages/Top-Universities-Top-achievementsEnvironmental-Science/111125392385720?ref=ts&fref=ts

 

https://www.facebook.com/pages/GermanDeutschUmweltwissenschaften-%C3%96kologieWissenschaftler-Studenten/318149598264566?ref=ts&fref=ts

 

https://www.facebook.com/BRICS.ecology?ref=ts&fref=ts

 

9 papers of 66 top ecology, environment articles, selected.

9  papers of 66 top ecology articles, selected.

bioassay, biotesting, hazard assessment, surfactants, detergents, water quality, water safety, aquatic ecosystems, self-purification, filter-feeders, bivalves, macrophytes,

66 top articles:

http://5bio5.blogspot.com/2013/12/9-papers-of-66-top-articles-selected_6.html

**

Steps to a new ecology. Updated to 66 abstracts.  Top ecology articles. Top environmental science articles. Top water ecology papers. Top ecotoxicology papers, books. Tags: bioassay, biotesting, hazard assessment, surfactants, detergents, water quality, water safety, aquatic ecosystems, self-purification, filter-feeders, bivalves, macrophytes, aquatic higher plants, toxicity.

Abstracts, web-sites and references of 66 publications that contributed to innovations in environmental sciences, ecology, environmental safety and water sustainability, authored and co-authored by scientists at Moscow State University, and co-authors (USA, UK, Germany). 

 

http://5bio5.blogspot.com/2012/08/63-steps-to-new-ecology-updated-to-66.html

Updated, Former file: 56 steps to a new ecology;

http://5bio5.blogspot.com/2012/07/56-steps-to-new-ecology-56-publications.html

66 publications, some of them with comments on what is new, and what is done for the first time, with info on availability online or in U.S. libraries.

Key words:

Landmark publications, new step, innovations, discoveries, new conceptualization, new terminology, environmental, science, ecology, toxicology, water quality, safety, pollution control,

**

1.                          Innovative conceptualization of ecosystem’s biomachinery (a new scientific term that was proposed by the author; it means ecological mechanisms that include biological communities and biodiversity) which improves water quality. The innovative experimental data analysis, concepts, and generalizations in this article provide the fundamental elements of the new qualitative theory of biocontrol of water quality in a systematized form. The theory covers water self-purification in freshwater and marine ecosystems. The theory is supported by the results of the author’s experimental studies of the effects exerted by some chemical pollutants including synthetic surfactants, detergents, and other xenobiotics on aquatic organisms. The new fundamental conceptualization provides a basis for remediation of polluted aquatic ecosystems including purification of water bodies and streams, and briefly present the qualitative theory of the self-purification mechanism of aquatic ecosystems, phytoremediation and other types of technologies.

Reference:

Biocontrol of Water Quality: Multifunctional Role of Biota in Water Self-Purification. – Russian Journal of General Chemistry, 2010, Vol. 80, No. 13, pp. 2754–2761; Abstract: http://www.chemeurope.com/en/publications/211554/biocontrol-of-water-quality-multifunctional-role-of-biota-in-water-self-purification.html;

Abstract: http://www.scribd.com/doc/75101299/

Full text: http://www.scribd.com/doc/49131150/;               www.scribd.com/doc/49131150; http://www.scribd.com/doc/73175163/; DOI: 10.1134/S1070363210130086;

**

 

2.                          Review of ecotoxicology of nanomaterials:

Ostroumov S.A., Kotelevtsev S.V. Toxicology of nanomaterials and environment. – Ecologica.  2011, vol. 18, issue 61, pp. 3-10.

               www.scribd.com/doc/58103094/; http://scipeople.ru/publication/102825/

**

3.                          A new conceptualization which is based on his suggestion to identify a new type of matter in the biosphere. The author called it «ex-living matter»  (ELM). The author discusses his experiments (together with his co-authors) which provide the factual foundation to this conceptualization;

Some issues of chemico-biotic interactions and the new in the teaching on the biosphere / series: Ecological Studies, Hazards, Solutions. Volume 17.  Moscow, MAX Press, 2011.  – 20 p. ISBN 978-5-317-03710-9.;

               http://scipeople.ru/publication/102875/; http://www.scribd.com/doc/57818520/

4.                          A review of the author’s studies of aquatic organisms, mainly marine and freshwater invertebrates that are filter-feeders – biological filters – as an important part of the biosphere and hydrosphere. The studies were conducted in laboratories of four countries.
Biological filters are an important part of the biosphere // Science in Russia. 2009. № 2. P. 30-36. [The journal ‘Science in Russia’ is published by the Presidium of Russian Academy of Sciences, both in English and in Russian; Nauka Publishers, Moscow; ISSN 0869-7078. www.ras.ru, ©Russian Academy of Sciences Presidium.]Full text free:

               https://sites.google.com/site/ostroumovsa/ostroumov-sa-biological-filters-are-an-important-part-of-the-biosphere–science-in-russia-2009–2-p-30-36

Abstract, key words:

http://www.scribd.com/doc/104805842;

 

 

5.                          This paper formulated a fundamentally new solution to the problem of selecting criteria for identification and assessing environmental hazards of chemical pollutants, toxicants; the paper explains why the currently accepted set of criteria is non-efficient and leads to mistakes;
Criteria of ecological hazards due to anthropogenic effects on the biota:searching for a system. – Dokl. Biol. Sci. (Doklady Biological Sciences). 2000; 371: 204-206. Doklady Biological Sciences: ISSN PRINT: 0012-4966. ISSN ONLINE: 1608-3105.Full text online free:http://sites.google.com/site/2000dbs371p204criteria/;

http://www.scribd.com/doc/49065476/              www.scribd.com/doc/49088234;

Why this paper is useful: http://www.scribd.com/doc/60891549/;

Blog post:

Blog post on a closely related paper in Rivista di Biologia:

A closely related paper: A new set of criteria in order to answer the question was formulated in this paper: is a given chemical substance hazardous to environment or not?    Reference:

Ostroumov S.A.  Anthropogenic effects on the biota: towards a new system of principles and criteria for analysis of ecological hazards.- Riv Biol (Rivista di Biologia) 2003,  96(1):159-169. Review.

Full text online free:

http://www.scribd.com/doc/52636721/             PMID: 12852181 [PubMed – indexed; http://www.scribd.com/doc/52636721/3-System-of-Criteria;

key words:

innovation, new solution, criteria,  assessment, environmental, ecological, hazards, danger, chemical, pollutants, toxicants,

 

6.                          This paper is the first publication that considered an aquatic ecosystem as an analog of a bioreactor, with some specific features that were described in the paper.

This paper gave a revolutionary new insight into the core functions and identity of ecosystem as a bioreactor to maintain water quality;

Reference:

An aquatic ecosystem: a large-scale diversified bioreactor with a water self-purification function. – Doklady Biological Sciences, 2000. Vol. 374, P. 514-516. Full text online free:   www.scribd.com/doc/49065542; http://www.scribd.com/doc/49069997;

7.                          This paper was the first that  discovered the multi-faceted role of the entire broad range of aquatic organisms of all main groups of biodiversity in water self-purification. The conclusion was made that the complex of all the organisms, the entire biota is a unique (both changeable and fragile)  part of the mechanism of ecosystem service to improve water quality;

The Concept of Aquatic Biota as a Labile and Vulnerable Component of the Water Self-Purification System. – Doklady Biological Sciences, Vol. 372, 2000, pp. 286–289.

               http://www.scribd.com/doc/49069991;

8.                          It is the first paper that reported two new experimental results. First, the new author’s experiments measured the biota-driven fluxes of the matter and chemical elements in a model ecosystem.  Second, the authors got another innovative result: a discovery of effects of chemical pollutants. Namely, these biota-driven flows of the chemical elements were decreased by a chemical pollutant exemplified by a synthetic surfactant:

S. A. Ostroumov and M. P. Kolesnikov. Biocatalysis of Matter Transfer in a Microcosm Is Inhibited by a Contaminant: Effects of a Surfactant on Limnea stagnalis. [Lymnaea stagnalis] – Doklady Biological Sciences, Vol. 373, 2000, pp. 397–399. Translated from Doklady Akademii Nauk, Vol. 373, No. 2, 2000, pp. 278–280.

Variant of the title of the paper:

Biocatalysis of the matter transfer in a microcosm is inhibited by a contaminant: an effect of a surfactant on Lymnaea stagnalis. S. A. Ostroumov. – Dokl Biol Sci 2000,

Full text online free:  http://www.scribd.com/doc/49065530

 

www.scribd.com/doc/49069985;

9.                          The paper discovered new mechanisms triggering eutrophication and as a result, a  new solution to the problem of eutrophication:

The Synecological Approach to the Problem of Eutrophication. – Doklady Biological Sciences, 2001,  v.381, No.1-6; pp.559-562.

Full text online free:

http://www.scribd.com/doc/50524170

DOI: 10.1023/A:1013378505630;

**

Excellent citation. Aquatic ecology paper was cited in U.S.A., Australia, Italy, U.K., Brazil, Uruguay, etc.

 

Excellent citation. Aquatic ecology paper. This paper was cited in U.S.A., Australia, Italy, United Kingdom, Brazil, Uruguay, and other countries

http://5bio5.blogspot.com/2013/03/excellent-citation.html

**

This is the paper that was cited :

Ostroumov S, (2005) Some aspects of water filtering activity of filter-feeders. Hydrobiologia 542: 275.    

The Australian article that cited this paper:

 

 

COMPARING THE INVASIBILITY OF EXPERIMENTAL “REEFS” WITH FIELD OBSERVATIONS OF NATURAL REEFS AND ARTIFICIAL STRUCTURES
Dafforn K.A., Johnston E.L., Glasby T.M.

PLoS ONE. 2012. Vol. 7. № 5. p. e38124.

**
DAFFORN K.A.Написать письмо автору1JOHNSTON E.L.1GLASBY T.M.2
1 Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW
2 New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, NSW

**

 

 

** More relevant sites:

CiteULike: Some aspects of water filtering activity of filter-feeders

www.citeulike.org/user/ATP/article/208655

 On the basis of the previous publications, our new data and the existing scientific literature, we have formulated some fundamental principles 

 

Full text is available free:

 

  1. www.academia.edu/…/Ostroumov_S.A._Some_aspects_of_water_filt

    Some aspects of water filtering activity of filter-feeders // Hydrobiologia. 2005. Vol. 542, No. 1. P. 275 – 286. text: 

Some other examples of citation of this paper:

Full text of another article that cited this paper:

http://www.iasj.net/iasj?func=fulltext&aId=47483

**

U.S.A.: University of Oklahoma

 

Community and foodweb ecology of freshwater mussels

CC Vaughn, SJ Nichols, DE Spooner – Journal of the North American …, 2008 – jnabs.org

Abstract Freshwater mussel (Superfamily Unionoidea) communities are important

components of food webs, and they link and influence multiple trophic levels. Mussels filter

food from both the water column and sediment with ciliated gills. Differences in cilia 

Cited by 67 Related articles BL Direct All 19 versions Cite

**

Italy: Università del Salento, Lecce

Filtering activity of< i> Spongia officinalis</i> var.< i> adriatica</i>(Schmidt)(Porifera, Demospongiae) on bacterioplankton: Implications for bioremediation of polluted …

L StabiliM LiccianoA Giangrande, C Longo… – Water research, 2006 – Elsevier

A study on the filtering activity has been carried out on reared specimens of the

demosponge Spongia officinalis var. adriatica coming from an off-shore farm displaced off

the Apulian coast (Ionian Sea). The experience was carried out under laboratory 

Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments

S Gifford, RH Dunstan, W O’Connor, CE Koller… – TRENDS in …, 2007 – Elsevier

The ability of animals to act in a bioremediative capacity is not widely known. Animals are

rarely considered for bioremediation initiatives owing to ethical or human health concerns.

Nonetheless, specific examples in the literature reveal that some animal species are 

Links between estuarine condition and spatial distributions of marine invaders

KA Dafforn, TM Glasby… – Diversity and …, 2009 – Wiley Online Library

Aim Non-indigenous species pose a significant threat to the environment and to global

economies. Predictive and preventative measures are widely considered more effective in

curtailing invasions than are eradication or control measures. Of key importance in the 

Changes in the immune response and metabolic fingerprint of the mussel,< i> Mytilus edulis</i>(Linnaeus) in response to lowered salinity and physical stress

JA Bussell, EA Gidman, DR Causton… – Journal of Experimental …, 2008 – Elsevier

Mussels, such as Mytilus edulis, are common keystone species on open coasts and in

estuaries and are frequently used in environmental monitoring programmes. Mussels

experience a wide range of environmental conditions at these locations, including rapid 

Cited by 19 Related articles All 12 versions Cite

 

  • a School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
  • b Institute of Biological, Environmental and Rural Sciences, Trophic Interaction Facility, Cledwyn Building, Aberystwyth University, Ceredigion, SY23 3DD, UK
  • c Centre for Applied Marine Science, Marine Science Laboratories, Ynys Faelog, Menai Bridge, LL59 5AB, UK
  • d Centre for Ecology and Hydrology, Orton Building, Deiniol Road, Bangor, Gwynedd, LL57 2UP, UK

**

Evaluation of microbiological accumulation capability of the commercial sponge< i> Spongia officinalis</i> var.< i> adriatica</i>(Schmidt)(Porifera, Demospongiae)

L StabiliM Licciano, C Longo, G Corriero, M Mercurio – Water research, 2008 – Elsevier

This study was carried out to evaluate the microbiological accumulation capability of the

demosponge Spongia officinalis var. adriatica. Six microbiological parameters were

researched in two sampling periods in the water and in reared sponge samples coming 

Filter-feeder macroinvertebrates as key players in culturable bacteria biodiversity control: A case of study with< i> Sabella spallanzanii</i>(Polychaeta: Sabellidae)

M LiccianoA TerlizziA Giangrande… – Marine environmental …, 2007 – Elsevier

The present study investigates the effect of the filtering activity of Sabella spallanzanii on the

culturable heterotrophic bacterial community through the comparison of the bacterial

diversity in transplanted polychaetes and the surrounding seawater. For isolation of 

 

 

DH Erwin, S Tweedt – Evolutionary Ecology, 2012 – Springer

Abstract Organismal modifications to their physical and chemical environment play a

significant role in structuring many modern ecosystems, and experimental evidence

suggests that such behavior can increase diversity. Despite the important role such 

Bacterial accumulation by the Demospongiae< i> Hymeniacidon perlevis</i>: A tool for the bioremediation of polluted seawater

C Longo, G Corriero, M LiccianoL Stabili – Marine pollution bulletin, 2010 – Elsevier

Sponges can filter large amounts of water, which exerts an important grazing impact on free

bacteria, an important component of the diet of sponges. We examined the accumulation of

bacteria in the Demospongiae (Hymeniacidon perlevis). Analyses were performed on 

Bioremediation of bacteria in aquaculture waste using the polychaete< i> Sabella spallanzanii</i>

L Stabili, R Schirosi, M Licciano, E Mola… – New biotechnology, 2010 – Elsevier

The excessive release of bacterial pathogens from animal waste into the aquaculture

environment has become a major concern for the aquaculture industry. The biological

filtration by macroinvertebrates contributes to water purification as a result of the 

[CITATION] Improving Lagoon Water Quality through Mussel Stock Enhancement: A Case Study of the UCSB Campus Lagoon

A Griffin, D Klaus, A Pappas – Restoration Ecology, 2006

HTML] Comparing the Invasibility of Experimental “Reefs” with Field Observations of Natural Reefs and Artificial Structures

KA Dafforn, TM Glasby, EL Johnston – PloS one, 2012 – dx.plos.org

Natural systems are increasingly being modified by the addition of artificial habitats which

may facilitate invasion. Where invaders are able to disperse from artificial habitats, their

impact may spread to surrounding natural communities and therefore it is important to 

Sewage-exposed marine invertebrates: survival rates and microbiological accumulation

L StabiliA Terlizzi, RA Cavallo – Environmental Science and Pollution …, 2012 – Springer

Abstract A large number of bacteria, including agents responsible for diseases, characterise

sewage-polluted seawaters. Apart from standards for bathing waters and bivalve

aquaculture waters, there are no general microbiological standards applicable to 

**

U.S.A.:

Influences of a< i> Cladophora</i> Bloom on the Diets of< i> Amblema Plicata</i> and< i> Elliptio Dilatata</i> in the Upper Green River, Kentucky

JM Yates – 2012 – digitalcommons.wku.edu

Abstract Freshwater mussels are the most imperiled group of freshwater invertebrates

globally. Recent research suggests a better understanding of mussel feeding ecology may

facilitate and improve conservation efforts. The use of stable isotopes is becoming an 

[PDF] Christmas tree worms (Spirobranchus giganteus) as a potential bioindicator species of sedimentation stress in coral reef environments of Bonaire, Dutch …

M Harty – JOuRNAL OF MARINE SCIENCE – ww.cieebonaire.org

Abstract The effect of land-based pollution on Bonaire’s coral reef ecosystem has not been

well-quantified. Observations of the coral reefs of Bonaire show a great abundance of the

polychaete Spirobranchus giganteus. This study investigated whether S. giganteus is 

**

Brazil:

 PDF] Evaluation by ICP-MS of Essential, Nonessential and Toxic Elements in Brazilian Fish and Seafood Samples

D GrottoBL Batista, MFH Carneiro, F Barbosa Jr – Food and Nutrition, 2012 – scirp.org

ABSTRACT Fish is considered one of the healthiest foods due to the high levels of several

important cardioprotective compounds such as long chain omega-3 polyunsaturated fatty

acids and vitamin E. However, due to widespread environmental pollution, high levels of 

Enhanced Blue Crab Predation on Rangia Clams after Exposure to Hypoxia

AC Howard – 2009 – scholarworks.uno.edu

Abstract Hypoxia or dissolved oxygen concentrations< 2 mg/L is a problem in estuaries

worldwide. In Lake Pontchartrain, a 250 km2 de-faunated zone exists as a result of salinity

stratification and episodic hypoxia. Mature common rangia clams (Rangia cuneata) are 


Scientific Research
[CITATION] The effect of salinity and temperature on the uptake of cadmium and zinc by the common blue mussel, Mytilus edulis with some notes on their survival

M Ali¹, A Taylor

D Grotto, BL Batista, MFH Carneiro, F Barbosa Jr – scirp.org

ABSTRACT Fish is considered one of the healthiest foods due to the high levels of several

important cardioprotective compounds such as long chain omega-3 polyunsaturated fatty

acids and vitamin E. However, due to widespread environmental pollution, high levels of 

[PDF] Anthropogenic modification of estuaries: disturbance and artificial structures influence marine invasions

KA Dafforn – 2009 – unsworks.unsw.edu.au

‘I hereby grant the University of New South Wales or its agents the right to archive and to

make available my thesis or dissertation in whole or part in the University libraries in all

forms of media, now or here after known, subject to the provisions of the Copyright Act 

[PDF] Particle Capture in Aquatic Systems: Investigating the Difference between a Single Collector and an Array

AP Pranoto – 2012 – sese.uwa.edu.au

Abstract For ecological processes such as vegetative filtration, larval settlement, and filter

feeding, there is not sufficient understanding of the mechanisms that control the rate of

capture of suspended particles. In addition, despite the fact that most biological collectors 

Resumen La biomanipulación es una de las principales herramientas para la mitigar los

 

efectos de la eutrofización. Consiste en la modificación de la cadena trófica de forma de

favorecer el consumo del fitoplancton por parte del zooplancton (Daphnia sp.). La 


**
Tags:

filter-feeders. Aquatic ecology, marine biology,  invertebrates, ecosystems, suspension feeders, biological oceanography, hydrobiology, mussels, bivalves, Mytilus edulis, M. galloprovincialis

FAQ on the paper: S. A. Ostroumov. On the Biotic Self-purification of Aquatic Ecosystems: Elements of the Theory.

FAQ: Biotic Self-purification of Aquatic Ecosystems.

http://5bio5.blogspot.com/2012/11/faq-biotic-self-purification-of-aquatic.html

Previous draft of this file:

FAQ on the paper:

S. A. Ostroumov. On the Biotic Self-purification of Aquatic Ecosystems: Elements of the Theory. – Doklady Biological Sciences. 2004. v.396,  pp.206-211.

www.springerlink.com/index/t0nv6rk522230175.pdf;  full text is online free:

self-purification, aquatic, ecosystems, conceptualization, new, ecology, environmental science, biology, ecotoxicology,  biological, ecotechnology, pollution control, bioassay, hazard assessment, xenobiotics, surfactants, detergents,  pollutants, bivalves, mussels, Mytilus, edulis,  galloprovincialis, oysters, Crassostrea, gigas, filtering, water, quality, ecosystem, safety, sustainability;

**

Question. SELF-PURIFICATION. WHAT IS SELF-PURIFICATION?

Answer: Self-purification is the complex process, or, more precisely, a set of natural processes in aquatic ecosystems, which lead to improving or maintaining water quality. Another term with a similar, but not completely the same meaning: assimilative capacity.

**

Question. WHAT KIND OF JOURNAL HAD PUBLISHED THIS PAPER?

Answer: This is a high rank journal that is indexed by PubMed and Web of Science.

ABSTRACTED/INDEXED IN: PubMed/Medline, SCOPUS, EMBASE, Chemical Abstracts Service (CAS), Google Scholar, CAB International, Academic OneFile, AGRICOLA, CAB Abstracts, ChemWeb, EMBiology, Gale, Global Health, INIS Atomindex, OCLC, SCImago, Summon by Serial Solutions;

Doklady Biological Sciences is a bimonthly journal presenting English translations of current Russian research in the anatomy, cytology, ecology, embryology, endocrinology, evolutionary morphology, experimental morphology, genetic, histology, hydrobiology, immunology, microbiology, morphology, parasitology, physiology, virology, and zoology sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The Proceedings appear 36 times per year; articles from the selected biological sections are collected, translated, and published bimonthly. The article must be presented for publication by acting Russian or foreign members of the Russian Academy of Sciences.

Editor-in-Chief: Yurii Osipov, President, Russian Academy of Sciences;

ISSN: 0012-4966 (print version);
ISSN: 1608-3105 (electronic version);

                                                          More detail on the journal see at the site: http://www.springer.com/life+sciences/journal/10630;

**

Question: HOW BROAD IS THE GEOGRAPHICAL RANGE OF THE AREA OF POTENTIAL RELEVANCE AND APPLICATION OF THE CONCLUSIONS THAT WERE MADE IN THE PAPER?

Answer: Just look on where the paper was cited: it was cited by the authors of other scientific articles who conducted their research in Europe, North America, and Asia (e.g., in China).

**

Question: WHERE THE RESULTS AND CONCLUSIONS OF THE PAPER COULD BE APPLIED?

Answer: the results presented in the paper could be applied in explaining and predicting the behaviour of aquatic ecosystems, in securing the safety of the sources of water supply, in protecting biodiversity of aquatic organisms, in aquaculture, and in education.

These countries, regions will benefit from the theory of water self-purification: http://5bio5.blogspot.com/2012/08/these-countries-regions-will-benefit.html

**

Question: IS THIS PAPER AVAILABLE IN OTHER LANGUAGES DIFFERENT FROM ENGLISH? Yes, it is available in Russian, see:

 On the biotic self-purification of aquatic ecosystems: elements of the theory. – DAN (Doklady Akademii Nauk), Vol. 396, 2004, No. 1, p. 136–141. [System of elements of the theory of biotic maintaining the natural purification potential of ecosystems]. The paper was awarded the honorary Diploma from the Academy of Water Sciences (2006). In Russ., translated into Eng.

**

Question: WHICH FUNDAMENTAL ASPECT OF BIOLOGY AND ECOLOGY IS ASSOCIATED WITH THE ISSUES OF SELF-PURIFICATION OF WATER?

Answer: In biology and ecology, one of the most fundamental and intriguing problems is stability of biological and ecological systems. What makes ecological systems stable under changing circumstances? In case of aquatic ecosystems, this issue is very much connected to the mystery of stability of aquatic habitats, i.e., water quality. This paper gives answers to that question.

**

Question: WHICH OTHER DISCOVERIES WERE MADE BY THE SAME AUTHOR?

Answer: the other discoveries by the same author (S.A.O.) are listed online: http://www.scribd.com/doc/51414359;

And:

18 KEY INNOVATIONS: Dramatic, exciting, startling, revolutionary DISCOVERIES: ecology, environmental sciences, biology. http://5bio5.blogspot.com/2012/09/18-key-innovations-innovations.html

And:

Environment, ecology: 18 innovations, other files online. Innovative conceptualization: ecosystems; water quality et al. http://5bio5.blogspot.com/2012/10/environment-ecology18-innovations-other.html

Ecology. Key Innovations, Discoveries. The material is a brief summary of innovations in the publications authored and coauthored by Dr. S.A. Ostroumov: ecology, environmental science, biology, ecotoxicology, biogeochemistry, biological, self-purification, water, ecotechnology, pollution control, bioassay, hazard assessment, xenobiotics, surfactants, detergents, heavy metals, toxicity, phytotoxicity, nanomaterials,  pollutants, bivalves, mussels, Mytilus, edulis, galloprovincialis, oysters, Crassostrea, gigas, filtering, water, quality, ecosystem, safery, sustainability;

**

Question: ARE THIS PAPER AND THE ISSUES COVERED IN IT RELEVANT TO AQUACULTURE?

Answer: yes, and it is shown in the following article:

Aquaculture,   Volume 314, Issues 1-4, 2011, Pages 244-251;

doi:10.1016/j.aquaculture.2011.01.045;

Feeding activity of mussels (Mytilus edulis) held in the field at an integrated multi-trophic aquaculture (IMTA) site (Salmo salar) and exposed to fish food in the laboratory. Bruce A. MacDonald a,  Shawn M.C. Robinson b and Kelly A. Barrington a;

**

Question: WHICH OTHER PUBLICATIONS PROVIDE MORE DETAIL ON THE ISSUES COVERED IN THIS PAPER [BY S.A.O.]?

Answer: those publications are available on the sites that are listed here:

Inhibitory analysis of top-down control: new keys to studying eutrophication, algal blooms, and water self-purification. – Hydrobiologia. 2002. vol. 469, pages 117-129; [ key words: Improving water quality, sustainability, environment safety] http://www.scribd.com/doc/52598579

On Some Issues of Maintaining Water Quality and Self-Purification.  – Water Resources, Vol. 32, No. 3, 2005, pp. 305–313 [Translated from Vodnye Resursy, Vol. 32, No. 3, 2005, pp. 337–346] http://www.scribd.com/doc/57511892

**

1.Legendary.discoveries.(New Draft). Innovative Concepts of How Ecosystems Improve Water Quality. Theory of water self-purification. http://www.scribd.com/doc/104854412

**

 

Legendary.discoveries. 3 (NewDraft).Inhibitory analysis: New method to explore regulatory mechanisms, top-down control in ecosystems: issues of eutrophication, algal bloom, self-purification:  http://www.scribd.com/doc/104974742

** On the multifunctional role of the biota in the self-purification of aquatic ecosystems. -RUSSIAN JOURNAL OF ECOLOGY, 2005, 36 (6): 414-420. http://www.scribd.com/doc/104742632

**

Ostroumov S. A. Basics of the molecular-ecological mechanism of water quality formation and water self-purification. – CONTEMPORARY PROBLEMS OF ECOLOGY, 2008, 1 (1): 147-152. http://www.scribd.com/doc/104724760;

** http://www.researchgate.net/profile/Sergei_Ostroumov/blog/6882_scribd_fulltexts;

http://www.researchgate.net/profile/Sergei_Ostroumov/blog/6766_EcologyEnvironmentonlinefree;

http://www.researchgate.net/profile/Sergei_Ostroumov/blog/5653_Water_Quality_Ecology_papers_available;

http://www.bioone.org/doi/abs/10.1899/07-058.1

**

Question: WHERE WAS THIS PAPER CITED?

Answer: Some examples are below:

Estimation of critical nutrient amounts based on input-output analysis in an agriculture watershed of eastern China:

[PDF] from hua.edu.vn DJ Chen, J Lu, YN Shen, RA Dahlgren… – Agriculture, Ecosystems & …, 2009 – Elsevier

The concept of critical nutrient amounts (CNA) for a watershed was developed to address eutrophication in surface waters from diffuse (non-point) source pollution. CNA is defined as the maximum allowable applied or generated amount (AGA) of a nutrient from natural and human sources that …

*

SA Ostroumov. Biomachinery for maintaining water quality and natural water self-purification in marine and estuarine systems: elements of a qualitative theory:

[PDF] from vliz.be SA Ostroumov – International Journal of Oceans and Oceanography, 2006 – vliz.be

Basic elements are formulated for a qualitative theory of the polyfunctional role of the biota in

maintaining self-purification and water quality in aquatic ecosystems. The elements of the theory

covers the following: (1) sources of energy for the mechanisms of self- purification; (2) the …

 

Self-Purification of Water Current and the Role of Microbiological Transformation of Organic Matter in the System of the Selenga River and Its Delta:

EO Makushkin… – Doklady Biological Sciences, 2005 – Springer;

The purpose of this study was to determine the self- purification elements of the water current

of the Selenga River, the main water source of Lake Baikal, in its lower reaches. For this

purpose, we analyzed our own data on the effects of pollutants, including organic …

*

On studying the hazards of pollution of the biosphere: Effects of sodium dodecylsulfate (SDS) on planktonic filter-feeders.

IM Vorozhun… – Doklady Biological Sciences, 2009 – Springer;

The goal of this study was to test whether SDS has an inhibitory effect on the ability of planktonic

filter- feeders Daphnia magna to remove phytoplankton from water during their filtration

activity. Experiments were performed with five-day-old D. magna approximately 1 mm in …

 

Accelerated decrease in surfactant concentration in the water of a microcosm in the presence of plants: Innovations for phytotechnology;

EV Lazareva… – Doklady Biological Sciences, 2009 – Springer;

Surfactants are an important group of membranotropic pollutants [1, 2]. Higher plants, including

aquatic ones, form the basis for phytotechnologies used to purify and remediate natural environment

polluted with various agents [3]. Aquatic plants (macrophytes) can serve as …

 

[PDF] 过水性湖泊自净能力的动态变化

[PDF] from cje.net.cn任瑞 刘茂松 章杰明 张明… – 态学杂志, 2007 – cje.net.cn

Self-purification ability of a water-carrying lake. REN Rui4li1 LIU Mao4song1 ZHANG Jie4

ming2 ZHANG Ming3 XU Mei11 School of Life ScienceNanjing UniversityNanjing

210093 China2 Suqian Bureau of ForestrySuqian 223800JiangsuChina3 …

*

Artificial neural network modelling of concentrations of nitrogen, phosphorus and dissolved oxygen in a non-point source polluted river in Zhejiang Province, southeast …

D Chen, J Lu… – Hydrological Processes, 2010 – interscience.wiley.com

A back-propagation algorithm neural network (BPNN) was developed to synchronously simulate

concentrations of total nitrogen (TN), total phosphorus (TP) and dissolved oxygen (DO) in response

to agricultural non-point source pollution (AGNPS) for any month and location in the …

*

[PDF] The theory of the hydrobiological mechanism of water self-purification in water bodies: from theory to practice

[PDF] from narod.ru SA Ostroumov – iirc.narod.ru

Abstract. New data on effects of chemicals (surfactants) on water filtration by aquatic invertebrates

are reported. The basics of the new theory of the polyfunctional role of biota in self-purification

of water in aquatic ecosystems (lakes, rivers, man-made reservoirs) are formulated. The …

*

Kinetics of the enzymatic decomposition of macromolecules with a fractal structure;

BM Dolgonosov… – Theoretical Foundations of …, 2007 – Springer;

Study of the decomposition of organic matter in natural water ecosystems and industrial processes

such as the processing of wood and wastewater treatment is of current concern to the solution

of environmental protection problems. The basic hard-to-oxidize components of organic …

*

Decreasing the measurable concentrations of Cu, Zn, Cd, and Pb in the water of the experimental systems containing Ceratophyllum demersum: The …

[PDF] from scipeople.com SA Ostroumov… – Doklady Biological Sciences, 2009 – Springer

Development of VI Vernadsky’s theory of the biosphere has revealed new examples of how

organisms affect the physical and chemical parameters of the environment [1, 2], including the

characteristics of the aquatic environment [3, 4]. Natural aquatic ecosystems have …

*

南太湖地区小型浅水湖泊自净能力季节变化研究

许磊  陈英旭 姚玉鑫 梁新 周李… – 环境科学, 2010 – cqvip.com

期刊大全识社区学者空术机构专题导读值中心客服中心维普资讯

中文期刊·专业文章维普专业检索错误号99 该篇文章不存在或已被移除

<<回到维普资讯首页关于我 | 客服中心 | 广告服 | 权合作 | 网站联盟 …

 *

A related paper (Ostroumov, S. A. 2005. Some aspects of water filtering activity of filter-feeders. Hydrobiologia 542:275–286) was cited in this article:

http://www.bioone.org/doi/abs/10.1899/07-058.1;

Caryn C. Vaughn, S. Jerrine Nichols, Daniel E. Spooner;

Community and foodweb ecology of freshwater mussels.

Journal of the North American Benthological Society 27(2): 409-423. 2008

doi: 10.1899/07-058.1;

**

Question: WHAT ARE THE RECENT PAPERS BY THE SAME AUTHOR?

Answer. Some of the recent papers by the same author are as following:

Biocontrol of Water Quality: Multifunctional Role of Biota in Water Self-Purification.-Russian Journal of General Chemistry, 2010, Vol. 80, No. 13, 2010, p. 2754–2761. http://5bio5.blogspot.com/2012/11/biocontrol-of-water-quality_23.html

 

Publications. Ecology, Environment, Biology. 2009-2010. See online free: http://www.scribd.com/doc/52390944/Publications-2009-2010-E-Int-2;

Areas of science: Ecology, Environment, Biology, Phytotechnology, Water quality, Bioassays: publications in 2009- 2010, authored and coauthored by Dr. S.A. Ostroumov, in English and Russian languages. Some of the other related publications by the same author(s) see at: http://www.scribd.com/doc/51414359; Ecology, Environmental Science; http://www.scribd.com/doc/50443283/Table-WorldWideCiting-March10;   World-wide and international citing of the publications…;

**

Question: IS THERE A CONCISE SUMMARY OF THE MAIN DISCOVERIES MADE IN THE WHOLE SERIES OF RELATED PUBLICATIONS BY THE SAME AUTHOR?

Answer: Yes, the concise summary is available online free:

**

18 KEY INNOVATIONS:  DISCOVERIES: ecology, environmental sciences, biology. http://5bio5.blogspot.com/2012/09/18-key-innovations-innovations.html

**

Environment, ecology: 18 innovations, other files online. Innovative conceptualization: ecosystems; water quality et al. http://5bio5.blogspot.com/2012/10/environment-ecology18-innovations-other.html

**

Environment, ecology: 18 innovations, other files online. Innovative conceptualization: ecosystems; water quality et al. http://5bio5.blogspot.com/2012/10/environment-ecology18-innovations-other.html

**

INNOVATIONS, DISCOVERIES, in ecology, environmental sciences, biology. 18 Items. Sites in Other Languages, List of One-line Titles. http://www.scribd.com/doc/83168032/

**

ADDENDUM:

**

Why the current measures against water pollution will fail for sure, if the new discoveries are ignored. http://5bio5.blogspot.com/2012/08/why-current-measures-against-water.html

**

Recent web-sites: new and updated: 1500 words, 5 pages

 

**

Selected bibliography: ecology, biogeochemistry, env. science … http://5bio5.blogspot.com/2012/11/selected-bibliography-ecology.html

**

Theory of how aquatic ecosystem works toward improving water quality. New: ecological self-purification of water  http://5bio5.blogspot.com/2012/11/theory-of-how-aquatic-ecosystem-works.html

**

31 Publications (life science, ecology, environmental science). Articles. http://5bio5.blogspot.com/2012/11/31-publications-life-science-ecology.html

**

Mytilus edulis, Crassostrea gigas,  Thalassiosira pseudonana, Synechococcus, Fagopyrum esculentum, Oryza sativa, 25 articles published:  http://5bio5.blogspot.com/2012/10/mytilus-edulis-crassostrea-gigas.html

**

Top of top. Environmental Science: blog posts

**

25 Top Innovations on Water Safety, Ecology. Selected, Indexed by Web of Science. Publications, With Comments on What is New. Publications with DOI; http://www.scribd.com/doc/104782038

**

Water quality and self-purification. Innovative paper of 2010, the reference and the site with the full text available online free.
Addendum: summaries of 25 related publications on environmental sciences.

**

 ________

KEY WORDS: frequently asked questions,

marine, freshwater, mussels, water self-purification, ecosystem, aquatic, water quality, pollutants,  pollution, biosphere, surfactants, detergents, sustainability, environmental safety, ecosystem services, organisms, functions, ecotoxicology, environmental toxicology, environmental chemistry, hydrobiology,

Toxicological, Bulletin, Doklady, Biological, Sciences, Akademii, Nauk, hazards, phytotechnology, phytoremediation, S.A.Ostroumov, water, university, xenobiotics, tetradecyltrimethylammonium bromide, Mytilus edulis, Mytilus galloprovincialis,