Inhibition of mussel suspension feeding by surfactants of three classes

Inhibition of mussel suspension feeding by surfactants of three classes.

link.springer.com/article/10.1007%2Fs10750-005-1200-7

 

Hydrobiologia, 2006, Volume: 556, Pages: 381-386.

link.springer.com/article/10.1007%2Fs10750-005-1200-7;

In 2006, an important series of experiments on ecotoxicology of detergents was published in the journal HYDROBIOLOGIA, (2006, Volume: 556, Pages: 381-386) by an international team of researchers. This was the first paper that reported the experiments that showed that all three main kinds of synthetic surfactants (detergent chemicals) slow down the filtration of water by key marine organisms, filter-feeders, bivalves, namely, the marine mussels of the Atlantic Ocean (Mytilus edulis). http://www.scribd.com/doc/45958156

 

Online, key links to this article:

https://www.researchgate.net/publication/215586803_;

https://www.researchgate.net/publication/215586803_Inhibition_of_mussel_suspension_feeding_by_surfactants_of_three_classes;

Authors:
Sergei A. Ostroumov, John Widdows,
Authors affiliation:
Moscow State University, Plymouth Marine Laboratory,
Tags:
marine mussels, Mytilus edulis, surfactants, detergents, toxicology, protection of environment, water quality, pollution, marine, aquatic, new, water, filtration,

Article: Imbalance of Factors Providing Control of Unicellular Plankton Populations Exposed to Anthropogenic Impact.

Article: Imbalance of Factors Providing Control of Unicellular Plankton Populations Exposed to Anthropogenic Impact.

2001Volume 379 pp. 341-3.43;

S. A. Ostroumov

http://link.springer.com/article/10.1023%2FA%3A1011600213221;

DOI  10.1023/A:1011600213221;

**

ABSTRACT: https://www.researchgate.net/publication/10614342_Imbalance_of_factors;

Ostroumov S.A. Imbalance of factors providing control of unicellular plankton populations exposed to anthropogenic impact. – Doklady Biological Sciences, 2001. Vol. 379, P. 341-343. 4 tables. Bibliogr.12 refs. (Translated from DAN 2001. Vol. 379. P.136-138). ISSN 0012-4966 (Print) 1608-3105 (Online). PMID: 12918370 [PubMed – indexed for MEDLINE]. The paper presents and analyzes new experimental data on the effects of chemical pollution of aquatic medium on the abundance of unicellular plankton organisms. The following 6 types of effects of filter-feeders and chemical pollutants [surfactants and detergents (mixtures)] on phytoplankton organisms were found (examples were given in this paper in Tab.2): (1) Inhibition of growth (and abundance); (2) Growth stimulation in the presence of surfactants and detergents; (3) Decrease in abundance as a result of elimination of plankton cells from water by the freshwater mollusks Unio tumidus and rotifers; (4) Abundance decrease as a result of water filtration by the marine mollusks Mytilus edulis, M. galloprovincialis, and Crassostrea gigas; (5) Decrease in the efficiency of cell elimination from water caused by the TX-100-induced (5 mg/l) inhibition of the filtration activity of the freshwater mollusks U. tumidus; (6) Decrease in the efficiency of cell elimination from water as a result of inhibition of the filtration activity of the marine mollusks Mytilus galloprovincialis and Crassostrea gigas induced by surfactants and Avon Herbal Care (hair shampoo). A new parameter and formula were suggested: the efficiency of cell elimination from water, ECE. The following maximum values of ECE were found (at the concentrations of the chemical, mg/l, in brackets): (1) Detergent OMO, Unio tumidus, 186.7 (50); (2) Detergent Losk-Universal, Mytilus galloprovincialis, 551.7 (7); (3) Detergent Tide-Lemon, Mytilus galloprovincialis, 206.9 (50); (4) Detergent IXI, M. galloprovincialis, 157.8 (10); (5) Detergent Deni-Automat, Crassostrea gigas, 10 800.0 (30); (6) Detergent Lanza, Crassostrea gigas, 261.7 (20); (7) Detergent Vesna-Delikat, Crassostrea gigas, 200.0 (1); 

The tables in the paper: 

Factors of regulation of unicellular plankton abundance (Tab.1); effects of surfactants and detergents on phytoplankton abundance (Tab.2); 7 detergents inhibit filtration of 3 species of marine and freshwater molluscs (Tab.3); Mytilus galloprovincialis eliminates from water the cells of Saccharomyces cerevisiae and algae Pavlova lutheri = M. lutheri as a result of filtration (comparing the 2 processes at the same time, Tab. 4). 

 

**

 CONCLUSIONS. The results obtained in this work demonstrated and proved that certain pollutants might cause a substantial imbalance of the factors controlling unicellular plankton populations. Direct and indirect (mediated by organisms-consumers) effects of certain surfactant-containing mixtures on unicellular plankton could sum with each other, giving rise to mutual amplification. This may cause a complete imbalance of the system. The conclusions made in this work may be applied to unicellular plankton of both marine and freshwater ecosystems, including ecosystems subjected to eutrophication. The results contribute to issues of environmental safety and resource use sustainability. DOI 10.1023/A:1011600213221; www.springerlink.com/index/QGJ756467J2R7470.pdf

tags:

water_quality, water, unio, tumidus, theory, sustainable_use, suspension_feeders, shampoo, services, self-purification, regulation, quality, pollution, pollutants, plankton_populations, phytoplankton_control, pavlova, mytilus, lutheri, gigas, galloprovincialis, filter-feeders, eutrophication_prevention, environmental_safety, ecosystems, ecosystem, ecological_stability, detergents, crassostrea, control, bioeffects, aquatic, ecosystems, aquatic_biota, aquaculture, marine, гидробиология, моллюски, качество воды, самоочищение, аквакультура, марикультура,

Unio tumidus,  Mytilus galloprovincialis,  Mytilus edulis,  Crassostrea gigas, 

The Effect of Synthetic Surfactants on the Hydrobiological Mechanisms of Water Self-Purification

Article ranks 2nd among many papers.

The Effect of Synthetic Surfactants on the Hydrobiological Mechanisms of Water Self-Purification ;

DOI 10.1023/B:WARE.0000041919.77628.8d;

http://link.springer.com/article/10.1023%2FB%3AWARE.0000041919.77628.8d;

Journal: Water Resources , Volume 31, Issue 5 , pp. 502-510 ;

Author: S. A. Ostroumov

http://5bio5.blogspot.com/2015/01/article-ranks-2nd-among-many-papers.html

Title:

The Effect of Synthetic Surfactants on the Hydrobiological Mechanisms of Water Self-Purification

The context below was calculated when this article was last mentioned on 8th January 2015;

Method of comparison: Compared to all articles in journal Water Resources:

So far Altmetric has tracked a number of articles from this journal. This article scored higher as 75% of them.

It Ranks 2nd;

**

References (57):

  1. Aizdaicher, N.A., Malynova, S.I., and Khristoforova, N.K., Influence of Detergents on Microalga Growth, Biologiya Morya, 1999, vol. 25, pp. 234–238. In Russian.
  2. Alekseenko, T.L., and Aleksandrova, N.G., The Role of Bivalves in the Mineralization and Sedimentation of Organic Matter, Gidrobiologicheskiy Zhurnal, 1995, vol. 31, no. 2, pp. 17–22. In Russian.
  3. Alimov, A.F., Funktsional’naya ekologiya presnovodnykh dvustvorchatykh mollyuskov (Functional Ecology of Freshwater Bivalves), Leningrad: Nauka, 1981. In Russian.
  4. Boichenko, V.K., and Grigor’ev, V.T., On the Method for Calculating the Entry of Synthetic Surfactants into the Ivankovo Reservoir, Vodnye Resursy, 1991, no. 1, pp. 78–87. In Russian.
  5. Braginskii, L.P., Velichko, I.M., and Shcherban’, E.P., Presnovodnyi plankton v toksicheskoi srede (Freshwater Plankton in Toxic Environment), Kiev: Naukova Dumka, 1987. In Russian.
  6. Vasternak, K., and Ostroumov, S.A., Effect of Water Pollution by Bio-S Detergent on Euglena, Gidrobiologicheskiy Zhurnal, 1990, vol. 26, no. 6, pp. 78–79. In Russian.
  7. Vinberg, G.G., Bentos Uchinskogo vodokhranilishcha (Benthos of the Ucha Reservoir), Moscow: Nauka, 1980. In Russian.
  8. Vinogradov, M.E., and Shushkina, E.A., Funktsionirovanie planktonnykh soobshchestv epipelagiali okeana (Functioning of Planktonic Communities of the Epipelagic Zones of the Ocean), Moscow: Nauka, 1987. In Russian.
  9. Gorbunova, A.V., Effect of Suspended Matter on Planktonic Filter Feeders, Sbornik Nauchnykh Trudov GNII Ozernogo i Rechnogo Rybnogo Khozyaistva, 1988, no. 288, pp. 69–70. In Russian.
  10. Gutel’makher, B.L., Metabolizm planktona kak edinogo tselogo (Metabolism of Plankton as a Whole), Leningrad: Nauka, 1986. In Russian.
  11. Kartasheva, N.V., and Ostroumov, S.A., Studying the Capacity of Surfactants to Inhibit the Filtration Activity of Rotifera, in Pishchevaya promyshlennost’ na rubezhe tret’ego tysyacheletiya (Food Industry on the Eve of the Third Millennium), Moscow: Moskovsk. gos. tekhnol. akademiya, 2000, pp. 245–247. In Russian.
  12. Kolotilova, N.N., and Ostroumov, S.A., Growth under the Effect of a Surfactant-Containing Substance, in Problemy ekologii i fiziologii organizmov (Problems of Ecology and Physiology of Organisms), Moscow: Dialog-MGU, 2000, p. 66.
  13. Konstantinov, A.S., Gidrobiologiya (Hydrobiology), Moscow: Vysshaya Shkola, 1979. In Russian.
  14. Lisitsyn, A.P., Matter and Energy Fluxes in the Outer and Inner Spheres of the Earth, Global’nye izmeneniya prirodnoi sredy-2001 (Global Changes in the Environment–2001), Dobretsov, N.L. and Kovalenko, V.I., Eds., Novosibirsk: GEO, 2001, pp. 163–248. In Russian.
  15. Matorin, D.N., Vavilin, D.V., Popov, I.V., and Venediktov, P.S., Method for Biotesting Natural Waters with the Use of Delayed Fluorescence of Microalgae, Metody biotestirovaniya kachestva vodnoi sredy (Methods for Biotesting the Quality of Aquatic Environment), Filenko, O.F., Ed., Moscow: Mosk. Gos. Univ., 1989, pp. 10–20. In Russian.
  16. Metelev, V.V., Kanaev, A.I., and Dzasokhova, N.G., Vodnaya toksikologiya (Aquatic Toxicology), Moscow: Kolos, 1971. In Russian.
  17. Mitin, A.V., Effect of Some Environmental Factors on Water Clarification Activity of Bivalves, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State University, 1984. In Russian.
  18. Moiseenko, T.I., Methodology and Methods for Determining Critical Loads (In the Case of Surface Waters of Kola Subarctics), Izv. RAN. Ser. Geogr., no. 6, pp. 68–78. In Russian.
  19. Monakov, A.V., Pitanie presnovodnykh bespozvonochnykh (Nutrition of Freshwater Invertebrates), Moscow: IPEE, 1998. In Russian.
  20. Ostroumov, S.A., Vvedenie v biokhimicheskuyu ekologiyu (Introduction to Biochemical Ecology), Moscow: Mosk. Gos. Univ., 1986. In Russian.
  21. Ostroumov, S.A., Biological Activity of Surfactant-Containing Waters, Khimiya i Tekhnologiya Vody, vol. 13, no. 3, pp. 270–283. In Russian.
  22. Ostroumov, S.A., Criteria of the Environmental Hazard of Anthropogenic Impact on Biota: Search for a System, Doklady Akademii Nauk ( Dokl. Akad. Nauk), 2000, vol. 371, no. 6, pp. 844–846. In Russian.
  23. Ostroumov, S.A., A Concept of Aquatic Biota as Labile and Vulnerable Component of Water Self-Purification System, Dokl. Akad. Nauk, 2000, vol. 372, no. 2, pp. 279–282. In Russian.
  24. Ostroumov, S.A., Biologicheskie effekty poverkhnostno-aktivnykh veshchestv v svyazi s antropogennymi vozdeistviyami na biosferu (Biological Effects of Surfactants in the Context of Anthropogenic Impact on the Biosphere), Moscow: MAKS-Press, 2000. In Russian.
  25. Ostroumov, S.A., Aquatic Ecosystem: A Large-Scale Diversified Bioreactor with Water Self-Purification System, Dokl. Akad. Nauk, 2000, vol. 374, no. 3, pp. 427–429. In Russian.
  26. Ostroumov, S.A., Principles of Analysis of the Environmental Hazard of Anthropogenic Impact, in Particular, Chemical Pollution: Conception and New Data, Vestnik MGU. Ser.16, Biologiya, 2000, no. 4, pp. 27–33. In Russian.
  27. Ostroumov, S.A., Biologicheskie effekty pri vozdeistvii poverkhnostno-aktivnykh veshchestv na organizmy (Biological Effect of Surfactants on Organisms), Moscow: MAKS-Press, 2001. In Russian.
  28. Ostroumov, S.A., Amphiphile Supresses the Ability of Mollusks to Filter Water and Remove Phytoplankton Cells from It, Izv. RAN. Ser. Biol., 2001, no. 1, pp. 108–116. In Russian.
  29. Ostroumov, S.A., Disbalance of Factors that Control the Population of Unicellular Planktonic Organisms under Anthropogenic Impact, Dokl. Akad. Nauk, 2001, vol. 379, no. 1, pp. 136–138. In Russian.
  30. Ostroumov, S.A., Response of Unio tumidus to the Impact of Chemical Mixture and the Hazard of Synecological Summing of Anthropogenic Impacts, Dokl. Akad. Nauk, 2001, vol. 380, no. 5, pp. 714–717. In Russian.
  31. Ostroumov, S.A., The Hazard of Two-Level Synergism at Synecological Summing of Anthropogenic Impacts, Dokl. Akad. Nauk, 2001, vol. 380, no. 6, pp. 847–849. In Russian.
  32. Ostroumov, S.A., Synecological Principles of Solving Eutrophication Problem, Dokl. Akad. Nauk, vol. 381, no. 5, pp. 709–712. In Russian.
  33. Ostroumov, S.A., Methods of Biotesting: Methods for Assessing the Potential Hazard of Chemicals in Accordance with Their Capacity to Reduce the Filtration Activity of Hydrobionts (Case Study of Bivalves), Ecol. Studies, Hazards, Solutions, 2001, vol. 5, no. 5.
  34. Ostroumov, S.A., A New Type of the Effect of Potentially Hazardous Substances: Disuniting Pelagic–Benthic Conjunction, Dokl. Akad. Nauk, 2002, vol. 383, no. 1, pp. 138–141. In Russian.
  35. Ostroumov, S.A., Identification of a New Type of Chemical Hazard: Inhibition of Environmental Remediation Processes, Doklady Akademii Nauk, vol. 385, no. 4, pp. 571–573. In Russian.
  36. Ostroumov, S.A., A System of Principles for Preservation of the Biogeocenotic Function and Biodiversity of Filter Feeders, Doklady Akademii Nauk, 2002, vol. 383, no. 5, pp. 710–713. In Russian.
  37. Ostroumov, S.A., Preservation of Biodiversity and Water Quality: the Role of Feedbacks in Ecosystems, Doklady Akademii Nauk, 2002, vol. 382, no. 1, pp. 138–141. In Russian.
  38. Ostroumov, S.A., and Maksimov, V.N., Degradation of Algae in Aquatic Medium Polluted by Etonium, Ekologiya, 1988, no. 6, pp. 165–168. In Russian.
  39. Ostroumov, S.A., and Fedorov, V.D., Principal Components of Ecosystem Self-Purification and the Possibility of Its Derangement Due to Chemical Pollution, Vestnik MGU. Ser. 16, Biologiya, 1999, no. 1, pp. 24–32. In Russian.
  40. Parshikova, T.V., Veselovskii, V.V., Veselova, T.V., and Dmitrieva, A.G., Effect of Surfactants on the Functioning of the Photosynthetic Apparatus of Chlorella, Al’gologiya, vol. 4, no. 1, pp. 38–46. In Russian.
  41. Skal’skaya, I.A., and Flerov, B.A., Assessment of the State of the Upper Volga (Yaroslavl Province), Ekologiya, 1999, no. 6, pp. 442–448.
  42. Skurlatov, Yu.I., Principles of Natural Water Quality Management, in: Ekologicheskaya khimiya vodnoi sredy (Ecological Chemistry of Aquatic Environment), Moscow: Mosk. Gos. Univ., 1988, vol. 1, pp. 230–255.
  43. Stavskaya, S.S., Udod, V.M., Taranova, L.A., and Krivets, I.A., Mikrobiologicheskaya ochistka vody ot poverkhnostno-aktivnykh veshchestv (Microbiological Water Purification of Surfactants), Kiev: Naukova Dumka, 1988.
  44. Sushchenya, L.M., Kolichestvennye zakonomernosti pitaniya rakoobraznykh (Quantitative Regularities in Crustacean Nutrition), Minsk: Nauka i Tekhnika, 1975.
  45. Waterbery, John, and Ostroumov, S.A., The Effect of Non-Ionogenic Surfactant on Cyanobacteria, Mikrobiologiya, vol. 63, no. 2, pp. 258–262. In Russian.
  46. Filenko, O.F., Vodnaya toksikologiya (Water Toxicology), Chernogolovka, 1988. In Russian.
  47. Flerov, B.A., Ekologo-fiziologicheskie aspekty toksikologii presnovodnykh zhivotnykh (Ecological–Physiological Aspects of Toxicology of Freshwater Animals), Leningrad: Nauka, 1989. In Russian.
  48. Yakovlev, V.A., Trophic Structure of Zoobenthos as an Ecological Indicator for Aquatic Ecosystems and a Water Quality Index, Vodnye Resursy, vol. 27, no. 2, pp. 237–244. In Russian.
  49. Lech, J., and Vodicnik, M., Biotransformation, in Fundamentals of Aquatic Toxicology, Rand, G. and Petrocelli, S.N.Y, Eds., N.Y.: Hemisphere Publ. Corp., 1985, pp. 526–557.
  50. Ostroumov, S.A., Biological Filtering and Ecological Machinery for Self-Purification and Bioremediation in Aquatic Ecosystems: Towards a Holistic View, Rivista di Biologia / Biology Forum, 1998, vol. 91, pp. 247–258.
  51. Ostroumov, S.A., Synopsis of New Data and Concepts in Aquatic and General Ecology, Ecological Studies, Hazards, Solutions, 2001, vol. 5, pp. 130–136.
  52. Ostroumov, S.A., Inhibitory Analysis of Top-Down Con-trol: New Keys to Studying Eutrophication, Algal Blooms, and Water Self-Purification, Hydrobiologia, vol. 469, pp. 117–129.
  53. Ostroumov, S.A., Polyfunctional Role of Biodiversity in Processes Leading to Water Purification: Current Con-ceptualizations and Concluding Remarks, Hydrobiologia, 2002, vol. 469, pp. 203–204.
  54. Palaski, M., and Booth, H., Zebra Mussel Pseudofaeces Production, Degradation, and Their Potential for Removal of PCBs from Freshwater, Abstr. Pap. Present. Ann. Meet. Mich. Acad. Ferris State Univ., Ann Arbor, Mich., 1995, vol. 27, no. 3, p. 381.
  55. Poremba, K., Gunkel, W., Lang, S., and Wagner, F., Marine Biosurfactants, III. Toxicity Testing with Marine Microorganisms and Comparison with Synthetic Surfactants, Z. Naturforsch, 1991, vol. 45C, pp. 210–216.
  56. Wetzel, R.G., Limnology: Lake and River Ecosystems, San Diego: Academic, 2001.
  57. Yamasu, T., and Mizofuchi, S., Effects of Synthetic, Neutral Detergent and Red Clay on Short-Term Measure-ment of O 2 Production in an Okinawan Reef Coral, Galaxea, 1989, vol. 8, no. 1, pp. 127–142.

**

Key words:

water quality, filter-feeders, water, self-purification, bivalves, ecotoxicology, aquatic, ecosystems, ecotoxicants, pollutants, surfactants, detergents, new, discovery, hazards, protection of environment, ecology, environmental, toxicology,  Mytilus edulis, Mytilus gallprovincialis, Mytilus, Unio, phytoplankton, water filtration, marine, freshwater, mussels, oysters, suspension feeders, inhibition, bivalves, mollusks, toxicity, bioassay,

Some aspects of water filtering activity of filter-feeders.

Some aspects of water filtering activity of filter-feeders.
DOI 10.1007/s10750-004-1875-1;
http://link.springer.com/article/10.1007/s10750-004-1875-1;
Article in: Hydrobiologia. 2005. Vol. 542, No. 1. P. 275 – 286.


Paper, water quality, aquatic ecosystem, freshwater, marine, filter-feeders, bivalves, rotifers, filtration rate, clearance rate, surfactants, detergents, ecological taxation, ecological repair, chemical pollution, pollutants, tetradecyltrymethylammonium bromide, heavy metalsAbstract, features.

Article reference:

Ostroumov S.A. Some aspects of water filtering activity of filter-feeders. – Hydrobiologia. 2005. Vol. 542, No. 1. P. 275 – 286.

http://5bio5.blogspot.com/2013/09/some-aspects-of-water-filtering.html

Features:

New concepts and terminology were introduced in the paper: ecological tax; ecological repair of water quality;

a review of the ecological role of filter-feeders, suspension feeders in water (both  freshwater and marine) ecosystems, a first paper to formulate a short  list of the most vital roles and functions as ecosystem engineers;

unique summary of quantitative data on filtration activity of invertebrates;

detailed, fresh-angle analysis of how filter-feeders contribute to water quality improvement and water self-purification;

a deeper understanding of ecosystem services as related to filter-feeders;

  • DOI: 10.1007/s10750-004-1875-1
  • Indexed: Web of Science. 
  •  New concepts and terminology were introduced in the paper: ecological tax; ecological repair of water quality. Opinion paper. Also, a review paper. 
  •  ISSN 0018-8158 (Print) 1573-5117 (Online).
  • Full text see: https://www.researchgate.net/publication/226902807_Some_aspects ; http://www.scribd.com/doc/45914201
  • ABSTRACT. The article gave a fresh review and innovative analysis of the vital role of filter-feeders in functioning and maintenance of stability of aquatic ecosystems (both freshwater and marine ones). The paper includes the following tables which summarize many relevant facts and innovative ideas. 
  • Tables: Table 1. Examples of the impact of filter-feeders on the water column: clearance time. Table 2. Examples of diversity of taxa of benthic organisms involved in removing seston from water, and filtration rates. Table 3. Effect of the increase in concentration of algae on the filtration rate and the amount consumed by rotifers Brachionus calyciflorus. Table 4. The ratio F:P in some groups of organisms (examples of what the author named “ecological taxation”, the new concept and term coined by the author). Table 5. The ratio F: (P+R) in some filter feeders. Table 6. Results of the ecological tax: biosediment formation in 6 ecosystems. Table 7. Contribution of various aquatic organisms to oxidation of organic matter in the ecosystem of the Sea of Okhotsk. Table 8. Some chemicals that inhibit the filtering activity of the filter-feeders (new data of the author). Table 9. Some features of water-filtering biomachinery: 6 fundamental principles. Table 10. The level-block approach to the analysis of ecological hazards of anthropogenic effects on the biota (the new conceptualization proposed by the author). 
  • Some fundamental principles that characterize the pivotal roles of the biodiversity of filter-feeders in ecosystems. Among those roles are: (1) the role of ecological repair (a new concept and term proposed by the author) of water quality, (2) the role of contributing to reliability and stability of the functioning of the ecosystem, (3) the role of contributing to creation of habitat heterogeneity, (4) the role of contributing to acceleration of migration of chemical elements. It is an important feature of the biomachinery of filter-feeders that it removes from water various suspended particles of a very broad range of sizes. Another important principle is that the amount of the organic matter filtered out of water is larger than the amount assimilated so that a significant part of the removed material serves no useful function to the organism of the filter-feeder, but serves a beneficial function to some other species and to the ecosystem as a whole. The new experiments by the author additionally demonstrated a vulnerability of the filtration activity of filter feeders (e.g. bivalves and rotifers) to some chemical pollutants and xenobiotics (e.g., synthetic surfactants exemplified by tetradecyltrymethylammonium bromide, and also heavy metals and some others). The inhibition of the filtration activity of filter-feeders may lead to the situation previously described as that of an ecological hazard of the second type. 
  • KEY WORDSwater quality, aquatic, ecosystem, freshwater, marine, filter-feeders, bivalves, rotifers, filtration rate, clearance rate, surfactants, detergents, ecological taxation, ecological repair, chemical pollution, pollutants, tetradecyltrymethylammonium bromide, heavy metals, mussels, oysters, mollusks, suspension feeders, self-purification, environmental, toxicology, ecotoxicology, ecology
  • .Full name of the author: in English: Sergei Andreevich Ostroumov; Sergei A. Ostroumov; in Russian: Сергей Андреевич Остроумов; С.А.Остроумов;
  •  CITATION of this article:
  • Innovation in ecology (filter-feeders): cited in U.S.A., U.K., Italy, Netherlands, Australia, Kuwait. http://5bio5.blogspot.com/2012/06/innovation-in-ecology-filter-feeders.html; A paper on aquatic ecology (innovative analysis of the roles of filter-feeders in ecosystems) was well-cited in international literature, including countries as diverse as U.S.A., Australia, Kuwait, U.K. and some others. Reference to the paper: Some aspects of water filtering activity of filter-feeders.- Hydrobiologia. 2005. Vol. 542, No. 1. P. 275 – 286; DOI: 10.1007/s10750-004-1875-1; DOI: 10.1007/1-4020-4111-X_26; 
  • Innovation in ecology (filter-feeders): cited in U.S.A., U.K., Italy, Netherlands, Australia, Kuwait; http://5bio5.blogspot.com/2012/06/innovation-in-ecology-filter-feeders.html
  • Examples of the papers that cited this article, selected
  • U.S.A.: Douglas H. Erwin, and Sarah Tweedt . Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. — Evolutionary Ecology. 2011 [Abstract: Organismal modifications to their physical and chemical environment play a significant role in structuring many modern ecosystems, …] DOI: 10.1007/s10682-011-9505-7; http://www.springerlink.com/content/68744t228x044112/; published online 13 July 2011;
  •  
  •  U.S.A.: Journal of the North American Benthological Society, 27(2): 409-423. 2008; doi: 10.1899/07-058.1; http://www.bioone.org/doi/abs/10.1899/07-058.1; Community and foodweb ecology of freshwater mussels; Caryn C. Vaughn, S. Jerrine Nichols, Daniel E. Spooner. 
  •  
  • ITALY: Margherita Licciano, Antonio Terlizzi, Adriana Giangrande, Rosa Anna Cavallo, Loredana Stabili. Filter-feeder macroinvertebrates as key players in culturable bacteria biodiversity control: a case of study with Sabella spallanzanii (Polychaeta: Sabellidae).- Marine Environmental Research, 64, 4 (2007) 504. [1 Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Via Prov. Lecce- Monteroni, 73100-Lecce, Italy; 2 Istituto per l’Ambiente Marino Costiero – Sezione di Taranto – CNR, Via Roma 3, 74100-Taranto, Italy];
  •  
  • ITALY: New Biotechnology, Volume 29, Issue 3, 15 February 2012, Pages 443–450; doi: 10.1016/j.nbt.2011.11.003; The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): a potential resource for biotechnological purposes? L. Stabili a, b, M.I. Acquaviva a, F. Biandolino a, R.A. Cavallo a, S.A. De Pascali b, F.P. Fanizzi b, M. Narracci a, A. Petrocelli a, E. Cecere a; a Institute for Coastal Marine Environment (IAMC)–CNR, U.O.S. Taranto, Talassografico “A. Cerruti”, Via Roma 3 – 74100 Taranto, Italy; b Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), Università del Salento, via Prov.le Lecce Monteroni – 73100 Lecce, Italy; 
  •  
  • NETHERLANDS: M. Harty. Christmas tree worms (Spirobranchus giganteus) as a potential bioindicator species of sedimentation stress in coral reef environments of Bonaire, Dutch Caribbean – Physis, 2011, vol.9, p.20-30. The full text see: http://www.scribd.com/doc/54500338/2011-PHYSIS-J-marine-science-v-9; Netherlands 
  • AUSTRALIA: Dafforn K.A., Glasby T.M., Johnston E.L. (2012) Comparing the Invasibility of Experimental “Reefs” with Field Observations of Natural Reefs and Artificial Structures. PLoS ONE 7(5): e38124. doi:10.1371/journal.pone.0038124; ** Affiliation: Katherine A. Dafforn 1*, Tim M. Glasby 2, Emma L. Johnston 1; 1 Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; 2 New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia; 
  •  
  • UNITED KINGDOM, KUWAIT: Mesopot. J. Mar. Sci., 2010, 25 (1): 11 – 30. The effect of salinity and temperature on the uptake of cadmium and zinc by the common blue mussel, Mytilus edulis with some notes on their survival. M. Ali¹ and A. Taylor²*; ¹Aquaculture, Fisheries and Marine Environment Department, Kuwait Institute for Scientific Research, P.O. Box 1638, Salmiya 22017, Kuwait; ²Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; *e-mail: a.taylor@bio.gla.ac.uk;
  •  
  • U.S.A.:  Yates, Jennifer Maria, “Influences of a Cladophora Bloom on the Diets of Amblema Plicata and Elliptio Dilatata in the Upper Green River, Kentucky” (2012). Masters Theses & Specialist Projects. Paper 1221. http://digitalcommons.wku.edu/theses/1221 
  • U.S.A. Citation in the text of Thesis written at Western Kentucky University, U.S.A.: A fragment of the text: Mussels assimilate only part of the organic matter they consume (Ostroumov, 2005). The consumed materials that aren’t assimilated, however, are not lost from the food web to respiration or burial. Instead, they are deposited on surface sediments in the form of feces or pseudofeces (Strayer et al., 1999). Thus, part of what mussels ingest is not of direct use to them but can reenter the ecosystem (Ostroumov, 2005). Both 5 suspension feeders and deposit feeders benefit from this cycling of matter (Howard & Cuffey, 2006). The excretory waste products of mussels, or “biodeposits”, are..